Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT TAM GIÁC ABD VÀ TAM GIÁC AED
BA=EA ( GT)
\(\widehat{BAD}=\widehat{EAD}\)( GT)
AD-CẠNH CHUNG
=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)
=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2 góc tương ứng )
b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)
cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)
mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)
=> \(\widehat{KBD}=\widehat{CED}\)
XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :
\(\widehat{KBD}=\widehat{CED}\)(CMT)
BD=ED ( CMT)
\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )
=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)
=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)
c)
vì \(BC//KN\)(GT)
=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )
MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA KD VÀ NC
=> KD//NC
=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)
XÉT TAM GIÁC KDN VÀ TAM GIÁC CND
\(\widehat{KDN}=\widehat{CND}\)( CMT)
DN-CẠNH CHUNG
\(\widehat{CDN}=\widehat{DNK}\)(CMT)
=> TAM GIÁC KDN = TAM GIÁC CND
=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)
LẠI CÓ DC= DK ( CMT )
=> KN=DK
XÉT TAM GIÁC KDN:KN=DK
=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)
ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!
A) Trong TG cân, đường vuông góc xuất phát từ đỉnh cân đồng thời là đường trung tuyến, trung trực, phân giác
b) TG AMC = TG CME (g.c.g : AM= MC trung điểm; Góc AMB= góc CME đối đỉnh ; góc MCE = góc BAM so le trong)
c) I nằm trên trung điểm BC và trung điểm AC
D)
Ta có: BM=ME ( TG AMC= TG CME)
=> BE = 2 BM
mà BI =2/3 BM ( I là trọng tâm)
=> BI= 1/3 BE
=> 3 BI = BE
Xét TG AEB, ta có :
BE < AB+ AE ( Bất đẳng thức trong TG)
mà BE= 3 BI( cmt)
=> 3 BI< AB + AE
BẠN TỰ VẼ HÌNH NHÉ !
TAM GIÁC ABC =TAM GIÁC DBC (c.c.c) Bạn tự CM
\(\Rightarrow\widehat{A}=\widehat{D}=90\)
MÀ AK \(\\ \)BD \(\Rightarrow\widehat{D}+\widehat{DKA}=180\)(TRONG CÙNG PHÍA )
\(\Rightarrow\) \(\widehat{DKA}=90\)
\(\Rightarrow\) TAM GIÁC DKA VUÔNG TẠI K ( 1)
MÀ AH=HD \(\Rightarrow\)HK LÀ ĐƯỜNG TRUNG TUYẾN CỦA TAM GIÁC DKA ứng với cạnh huyền AD (2)
ĐỊNH LÝ : TRONG TAM GIÁC VUÔNG ĐƯỜNG TRUNG TUYẾN ỨNG VỚI CẠNH HUYỀN = 1 NỬA CẠNH ẦY (3)
Từ 1;2;3 \(\Rightarrow\)\(HK=\frac{1}{2}AD\)
KO CHẮC CHẮN LẮM ĐÂU NHA !
Vì AD là tia phân giác của HAB nên KD = DH
xét tam giác BDK và tam giác IDH
BKD = IHD = 90độ
KD = DH ( cmt )
BDK = IDH ( 2 góc đối đỉnh )
suy ra tam giác BDK = tam giác IDH ( g.c.g)
suy ra IH = KB ( 2 cạnh t.ư)
b) vì tam giác BDK = tam giác IDH (câu a )nên BKI = KIH
xét tam giác BIK và tam giác HKI
BK = IH ( câu a )
BKI = KIH ( cmt )
KI - cạnh chung
suy ra tam giác BIK = ta giác HKI ( c.g.c)
suy ra BIK = IKH ( 2 góc t.ư )
mà 2 góc này ở vị trí SLT nên HK//IB
c) vì KD vuông góc vs AK
AC vuông góc vs AK suy ra AC // KD ( quan hệ từ vuông góc đến song song )
suy ra KDA = DAC ( 2 góc SLT) ( 1 )
Xét tam giác KDA và tam giác HDA
DKA = DHA = 90độ
DA - cạnh huyền
KAD = DAH
suy ra tam giác KDA = tam giác HDA (c.h.g.n)
suy ra KDA= ADH (2 góc t.ư) (2)
từ (1) và (2) suy ra CDA= DAC (2 góc t. ư)
suy ra tam giác DAC cân tại C
suy ra CM vừa là tia phân giác vừa là đường cao của tam giác DAC
Mà đường cao AH và đường cao CM cắt nhau tại N nên N là trực tâm của tam giác ACD
CHÚC BẠN HỌC TỐT
Bạn cho thiếu đề rồi. Có điểm K với điểm M đâu mà chứng minh
Bạn cho thêm đề để tụi mình giải nhé! Chúc bạn học tốt
Kéo dài MN cắt AC tại F
Ta có: \(\hept{\begin{cases}AB//NF\\AB\perp AC\end{cases}\Rightarrow NF\perp}AC\)
Xét tam giác ACN có:
\(\hept{\begin{cases}NF\perp AC\left(cmt\right)\\AH\perp NC\left(gt\right)\end{cases}}\)
Mà M là giao điểm của NF và AH
\(\Rightarrow M\)là trực tâm của tam giác ACN
\(\Rightarrow EC\perp AN\)( tc )
\(\Rightarrow\widehat{AEC}=90^0\)
\(\Rightarrow\Delta AEC\)vuông tại E