K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: BK là phân giác

=>AK/CK=BA/BC

ΔAHC có AD là phân giác

nên DH/CD=AH/AC=BA/BC

=>DH/CD=AK/CK

=>KD//AH

a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{CBA}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

a. Xét tam giác $AHB$ và $CHA$ có:

$\widehat{AHB}=\widehat{CHA}=90^0$

$\widehat{HAB}=\widehat{HCA}$ (cùng phụ với $\widehat{HAC}$)

$\Rightarrow \triangle AHB\sim \triangle CHA$ (g.g)

b.

$BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm) 

Từ tam giác đồng dạng phần a suy ra $CH=\frac{AH^2}{BH}=\frac{12^2}{9}=16$ (cm) 

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

AH
Akai Haruma
Giáo viên
15 tháng 7 2023

 

Hình vẽ:

loading...

30 tháng 3 2017

Tam giác ABC vuông

=>

BC2 = AB2 + AC2

AH.BC = AB.AC

=>

BC2 = 225 + AC2

12BC = 15AC

Thay BC = 15AC/12 vào pt trên

=>

81AC2 = 32400

=> AC2 = 400

=> AC = 20cm

=> BC = 25cm

BH = \(\sqrt{AB^2-AH^2}\)\(\sqrt{15^2-12^2}\)= 9

Ta có:

\(\widehat{AHB}\) = \(\widehat{CHA}\)= 90(1)

cos (\(\widehat{ABH}\)) = \(\frac{BH}{AB}\)\(\frac{9}{15}\)\(\frac{3}{5}\)

cos (\(\widehat{CAH}\)) = \(\frac{AH}{AC}\)\(\frac{12}{20}\)\(\frac{3}{5}\)

=> \(\widehat{ABH}\)= \(\widehat{CAH}\)(2)

(1), (2) => Tam giác AHB đồng dạng CHA

Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA

4 tháng 6 2021

A B C H D E

a, Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác AHB ~ tam giác CHA ( g.g )

4 tháng 6 2021

b, Xét tam giác AEB và tam giác DAB ta có 

^AEB = ^DAB = 900

^B _ chung 

Vậy tam giác AEB ~ tam giác DAB ( g.g )