Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi bạn ơi, 2 đường thẳng song song thì làm sao mà cắt nhau được.
a, theo pytago\(=>BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20cm\)
theo hệ thức lượng
\(=>AM.BC=AB.AC=>AM=\dfrac{12.16}{20}=9,6cm\)
theo ct lượng giác\(=>\sin C=\dfrac{AM}{AC}=\dfrac{9,6}{16}=>\angle\left(C\right)\approx36^o52'=>\angle\left(B\right)=53^08'\)
b, AM ý a, tính rồi,
theo hệ thức lượng \(=>AB^2=BM.BC=>BM=\dfrac{12^2}{20}=7,2cm\)
c,theo hệ thứ lượng \(=>AE.AB=AM^2\left(1\right)\)
pytago\(AC^2-MC^2=AM^2\left(2\right)\)
(1)(2)=>đpcm
\(a,AC=\sqrt{BC^2-AB^2}=16\left(cm\right)\left(pytago\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{192}{20}=9,6\left(cm\right)\)
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{16}{20}=\dfrac{4}{5}\approx\sin53^07'\Leftrightarrow\widehat{B}\approx53^07'\)
a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm
b, 1. Chứng minh tương tự câu a)
2. Sử dụng định lí Pytago cho tam giác vuông AHM
Xét \(\Delta ABC\)vuông tại A có: \(AH\perp BC\Rightarrow\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BC\end{cases}}\)
Ta có: \(AB^2.HC=BH.BC.HC\left(1\right)\)
\(AC^2.HB=CH.BC.HC\left(2\right)\)
Từ 1 và 2= đpcm
Xét hai tam giác vuông ABH và CAH có:
ABH^=HAC^ (cùng phụ với góc BAH^)
Do đó, ΔABH∼ΔCAH
Suy ra: AH/CH=BH/AH ⇒AH^2=BH.CH.