Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABH\)và \(\Delta CBA\)có:
\(\widehat{AHB}=\widehat{CAB}=90^0\)
\(\widehat{B}\) chung
suy ra: \(\Delta ABH~\Delta CBA\)
b) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(BC^2=15^2+20^2=625\)
\(\Rightarrow\)\(BC=\sqrt{625}=25\)
\(\Delta ABH~\Delta CBA\)\(\Rightarrow\)\(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{BH}{15}=\frac{15}{20}=\frac{3}{4}\)
\(\Rightarrow\)\(\frac{AH}{20}=\frac{3}{4}\)\(\Rightarrow\)\(AH=15\)
\(\frac{BH}{15}=\frac{3}{4}\)\(\Rightarrow\)\(BH=11,25\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot25=15\cdot20\)
\(\Leftrightarrow AH\cdot25=300\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)
hay HC=16(cm)
Vậy: BC=20cm; AH=12cm; HC=16cm
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔACB vuông tại A có AH vuông góc BC
nên AC^2=CH*CB
c: \(BC=4+9=13\left(cm\right)\)
=>\(\dfrac{S_{ABH}}{S_{CBA}}=\left(\dfrac{AB}{AC}\right)^2=\dfrac{HB}{HC}=\dfrac{4}{9}\)
a: \(S_{ABC}=\dfrac{1}{2}\cdot8\cdot4=16\left(cm^2\right)\)
b: Xét tứ giác AHBE có
M là trung điểm chung của AB và HE
góc AHB=90 độ
=>AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
=>ABFC là hình thoi
a)Xét \(\Delta ABH\) và \(\Delta CBA\) có:
\(\widehat{BHA}\)=\(\widehat{BAC}\)=900
\(\widehat{B}\) chung
\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g.g\right)\)
b)Áp dụng định lý Pitago,ta có:
BC2=AB2+AC2
\(\Rightarrow\)BC2=152+202
\(\Rightarrow BC^2=225+400\)
\(\Rightarrow BC^2=625\)
\(\Rightarrow BC=\sqrt{625}\)
\(\Rightarrow BC=25cm\)