Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác vuông ABC, theo hệ thức lượng: \(BD=\frac{c^2}{a}.\)
Xét tam giác vuông BDA, ta có: \(m=EB=\frac{BD^2}{BA}=\frac{c^3}{a^2}\)
Hoàn toàn tương tự: \(n=\frac{b^3}{a^2}\)
Vậy thì \(a.m.n=\frac{b^3.c^3}{a^3}\)
Lại có: \(bc=ah\Rightarrow\frac{bc}{a}=h\Rightarrow\frac{b^3c^3}{a^3}=h^3\Rightarrow a.m.n=h^3.\)
Câu hỏi của Diệp Song Thiên - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo link này nhé!
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}BH\cdot BC=AB^2\\CH\cdot BC=AC^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}\\CH=\dfrac{AC^2}{BC}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{BC}\cdot\dfrac{BC}{AC^2}=\dfrac{AB^2}{AC^2}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(BE\cdot BA=HB^2\)
\(\Leftrightarrow BF=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(CF\cdot CA=CH^2\)
hay \(CF=\dfrac{HC^2}{AC}\)
Ta có: \(\dfrac{BE}{CF}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)
\(\Leftrightarrow\dfrac{BE}{CF}=\dfrac{AB^4\cdot AC}{AC^4\cdot AB}=\left(\dfrac{AB}{AC}\right)^3\)
Em đã học tứ giác nội tiếp chưa? Nếu học rồi áp dụng nó sẽ nhanh hơn.
Gọi H là trực tâm tam giác ABC.
+) Ta có: AM//NH ( cùng vuông góc với AB)
AN// MH ( cùng vuông góc với AC)
=> AMHN là hình bình hành
Gọi O là giao điểm của AH và MN
=> O là trung điểm AH
+) Xét tứ giác BFHD có: \(\widehat{FBD}+\widehat{FHD}+\widehat{BFH}+\widehat{BDH}=360^o\)
=> \(\widehat{FBD}+\widehat{FHD}+90^o+90^o=360^o\)
=> \(\widehat{FBD}+\widehat{FHD}=180^o\)
Mà \(\widehat{FHD}+\widehat{FHA}=180^o\)( kề bù)
=> \(\widehat{FBD}=\widehat{FHA}\)
Mặt khác\(\widehat{FHA}=\widehat{HAM}\) ( so le trong)
=> \(\widehat{FBD}=\widehat{HAM}\)
=> \(\widehat{ABC}=\widehat{HAM}\)(1)
Xét tứ giác HDCE có:
\(\widehat{DCE}+\widehat{DHE}+\widehat{HDC}+\widehat{HEC}=360^o\)
=> \(\widehat{DCE}+\widehat{DHE}+90^o+90^o=360^o\)
=> \(\widehat{DCE}+\widehat{DHE}=180^o\)
Mà \(\widehat{AHM}+\widehat{EHD}=180^o\)( kề bù)
=> \(\widehat{AHM}=\widehat{DCE}\Rightarrow\widehat{AHM}=\widehat{ACB}\)(2)
Từ (1), (2) => Tam giác MAH ~ Tam giác ABC
=> \(\frac{MA}{AH}=\frac{AB}{BC}\Rightarrow\frac{MA}{2.AO}=\frac{AB}{2BI}\Rightarrow\frac{MA}{AO}=\frac{AB}{AI}\)(3)
Từ (1), (3)=> Tam giác MAO ~ tam giác ABI
=> \(\widehat{OMA}=\widehat{IAB}\)
Ta lại có: \(\widehat{IAB}+\widehat{IAM}=\widehat{BAM}=90^o\)
=> \(\widehat{OMA}+\widehat{IAM}=90^o\)
Gọi K là giao điểm của MN và AI
=> \(\widehat{KMA}+\widehat{KAM}=90^o\)
=> \(\widehat{AKM}=90^o\)
=> AI vuông MN
cái chỗ \(\frac{MA}{2AO}\)= \(\frac{AB}{2BI}\)\(\Rightarrow\frac{MA}{AO}=\frac{AB}{AI}\)
Nhg \(\frac{MA}{2AO}\) = \(\frac{AB}{2BI}\)\(\Rightarrow\frac{MA}{AO}=\frac{AB}{BI}\)
#MÃ MÃ#
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
a: \(AC=\sqrt{12^2+14^2}=2\sqrt{85}\left(cm\right)\)
\(BH=\dfrac{BA\cdot BC}{AC}=\dfrac{12\cdot14}{2\sqrt{85}}=\dfrac{84\sqrt{85}}{85}\left(cm\right)\)
b: Xét ΔABC có BD là đường phân giác
nên AD/AB=CD/BC
=>AD/12=CD/14
=>AD/6=CD/7
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{2\sqrt{85}}{13}\)
Do đó: \(AD=\dfrac{12\sqrt{85}}{13}\left(cm\right);CD=\dfrac{14\sqrt{85}}{13}\left(cm\right)\)