K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2022

a) Xét ΔADB và ΔACB, có:

DAB = BAC (= 90)

AD = AC

AB chung

⇒ ΔADB = ΔACB (c.g.c)

ADB = ACB

Mà ∠ACB = 60 

⇒ ∠ADB = 60

Xét ΔDBC có ∠ADB + ∠ACB + ∠DBC = 180

                  ⇒  60 + 60 + ∠DBC = 180

                  ⇒ ∠DBC = 180 - 60 - 60

                  ⇒ ∠DBC = 60

⇒ ΔDBC là tam giác đều

b) \(\Delta DBC\)    đều

=> \(CD=BC=2\sqrt{3}\Rightarrow AC=\dfrac{CD}{2}=\sqrt{3}\)

Xét \(\Delta ABC\)   vuông tại A, có:

\(AB=\sqrt{BC^2-AC^2}=3\)

 

 

10 tháng 6 2020

Tự vẽ hình nha !!!

a) Áp dụng định lý Py-ta-go ta có 

AB2 + AC2 = BC2

=> 82 + 62 = BC2

=> BC = 10 cm

b) Ta có BA = AD

=> AC là trung tuyến của BD

Vì \(AC\Omega BK=\left\{E\right\}\)

=> E là trọng tâm của tam giác BDC

=> \(\frac{EC}{AC}=\frac{2}{3};\frac{AE}{AC}=\frac{1}{3}\)mà AC = 6 cm

=> EC = 4 cm ; AE = 2 cm

c) Xét tam giác BAC và tam giác DAC có

\(\hept{\begin{cases}BA=AD\\\widehat{CAB}=\widehat{CAD=90^{\text{o}}}\\AC\text{ chung}\end{cases}}\Rightarrow\Delta BAC=\Delta DAC\left(c.g.c\right)\)

=> BC = DC (cạnh tương ứng)

21 tháng 2 2020

A B C D 4cm

a) Xét △ABD và △ABC có :

           AB chung (gt)

           AD = AC (gt)

\(\Rightarrow\)△ABD = △ABC (hai cạnh góc vuông)

b) Vì △ABD = △ABC

\(\Rightarrow\)BD = BC

\(\Rightarrow\)△BCD cân tại B

\(\Rightarrow\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\widehat{CBD}=180^o-\left(\widehat{BCD}+\widehat{BDC}\right)\)

\(\Rightarrow\widehat{CBD}=60^o\)

Ta có : \(\widehat{CBD}=\widehat{BCD}=\widehat{BDC}=60^o\)

\(\Rightarrow\)△BCD là tam giác đều

c) Xét △ABC vuông tại A có \(\widehat{ACB}=60^o\)

\(\Rightarrow\)△ABC là tam giác nửa đều

\(\Rightarrow\)BC = 2AC

\(\Rightarrow\)BC = 8 cm

Vì AD = AC (gt)

\(\Rightarrow\)AD = 4cm

Vậy BC = 8 cm

       AD = 4cm

21 tháng 2 2020

B A D C     Hình ảnh chỉ mang tính chất minh họa

a) Theo bài ra ta có \(\hept{\begin{cases}\widehat{CAB}=90^o\\\widehat{DAB}+\widehat{CAB}=180^o\end{cases}}\)  ( 2 góc kề bù )

\(\Rightarrow\widehat{DAB}=90^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\Delta ABD\) vuông tại A có

AB : cạnh chung

AC =  AD  ( gt)

\(\Rightarrow\)\(\Delta ABC\) = \(\Delta ABD\)  ( c-g-c )

b) Theo câu a ta có \(\Delta ABC\) =    \(\Delta ABD\)

\(\Rightarrow BC=BD\)  (2 cạnh tương ứng )

   +) Xét \(\Delta BCD\) có

\(\hept{\begin{cases}BC=BD\\\widehat{C}=60^o\end{cases}}\left(gt\right)\)

\(\Rightarrow\)\(\Delta BCD\)  là tam giác đều

cTheo  bài ra ta có \(\hept{\begin{cases}AD=AC\\AC=4cm\end{cases}}\)  ( gt)

\(\Rightarrow AD=4\) cm

+) Xét \(\Delta ABC\) vuông tại A  

\(\Rightarrow\widehat{ABC}+\widehat{ACB}=90^o\)  ( tính chất tam giác vuông )

\(\Rightarrow\widehat{ABC}+60^o=90^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

+) Xét \(\Delta ABC\) vuông tại A và \(\widehat{ABC}=30^o\)

\(\Rightarrow AC=\frac{1}{2}BC\)  ( t/c trong 1 tam giác vuông có 1 góc = 30 độ thì cạnh đối diện vs   góc 30 độ bằng 1 nửa cạnh huyền )

\(\Rightarrow BC=2.AC\)

\(\Rightarrow BC=2.4=8\)  ( cm)

Vậy AD = 4 ( cm) và BC = 8  ( cm)

!! K chắc

@@ Học tốt

Chiyuki Fujito

10 tháng 1 2017

làm kiểu j vậy

a: BC=căn 8^2+6^2=10cm

b: Xét ΔCBD có

CA vừa là đường cao, vừa là trung tuyến

=>ΔCBD cân tại C

=>CB=CD

Xét ΔCDE và ΔCBE có

CD=CB

góc DCE=góc BCE

CE chung

=>ΔCDE=ΔCBE

c: ΔCBD có CB=CD nên ΔCBD cân tại C

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)