Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH(cmt)
\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)
Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)
Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)
Ta có: BA+AK=BK(A nằm giữa B và K)
BH+HC=BC(H nằm giữa B và C)
mà BA=BH(ΔABD=ΔHBD)
và AK=HC(cmt)
nên BK=BC
Ta có: BK=BC(cmt)
nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DK=DC(cmt)
nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của KC
hay BD\(\perp\)KC(đpcm)
a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)
Suy ra: AD=HD(hai cạnh tương ứng)
Ta có hình vẽ sau: ( tự vẽ hình nha bạn)
a) Xét \(\Delta ABD\)và \(\Delta HBD\):
BD: cạnh chung
\(\widehat{ABD}=\widehat{HBD}\left(gt\right)\)
\(\widehat{BAD}=\widehat{BHD}=90^o\)
=> \(\Delta ABD=\Delta HBD\left(ch-gn\right)\)
=> AD=HD( 2 cạnh tương ứng)
=> đpcm
b)Xét \(\Delta DHC\)vuông tại H có:
DC>HC
Mà HD=AD ( cm câu a)
=> DC> AD
c) ( Câu này sai đề nè bạn, phải là tam giác BKC cân nha)
Xét \(\Delta ADK\)và \(\Delta HDC:\)
AD=HD( cm câu a)
\(\widehat{ADK}=\widehat{HDC}\left(đđ\right)\)
\(\widehat{DHK}=\widehat{DHC}=90^o\)
=> \(\Delta ADK=\Delta HDC\left(ch-gn\right)\)
=> AK=HC ( 2 cạnh t/ứ)
Mà AB=BH( \(\Delta ABD=\Delta HBD\))
=> AB+AK=HC+BH
=> BK=BC
=> \(\Delta BKC\)cân tại B
=> đpcm
a) Xét tam giác ABD và tam giác HBD có :
BD chung
^ABD = ^HBD ( BD là phân giác của ^B )
=> Tam giác ABD = tam giác HBD ( ch - gn )
=> AD = HD ( hai cạnh tương ứng )
=> AB = AH ( _________________ )
b) Ta có : ^BAD + ^DAK = 1800 ( kề bù )
^BHD + ^DHC = 1800 ( kề bù )
Mà ^BAD = ^BHD = 900
=> ^DAK = ^DHC = 900
Xét tam giác DAK và tam giác DHC có :
^DAK = ^DHC ( cmt )
DA = DH ( cmt )
^ADK = ^HDC ( đối đỉnh )
=> Tam giác DAK = tam giác DHC ( g.c.g )
=> AD = DC ( hai cạnh tương ứng )
=> AK = HC ( _________________ )
c) ( Phải là KBC cân nhé . ABC sao được . Với lại bạn nối KC cho mình . Vẽ hơi vội )
Ta có : BK = BA + AK
BC = BH + HC
Mà BA = BH , AK = HC ( cmt )
=> BK = BC
Xét tam giác KBC có BK = BC ( cmt )
=> Tam giác KBC cân tại B ( đpcm )
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: AD=DH
DH<DC
=>AD<DC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại D
=>D là trực tâm
=>BD vuông góc KC
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔBAD=ΔBHD
c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó:ΔADK=ΔHDC
Suy ra: DK=DC và AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
a) Xét tam giác ABD và tam giác HBD có :
\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)
\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )
Chung BD
\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )
\(\Rightarrow AD=DH\left(đpcm\right)\)
b) Xét tam giác DHC vuông tại H có \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )
Mà \(AD=DH\)( câu a )
\(\Rightarrow AD< CD\)
c) \(\widehat{ABC}=180^o-90^o-30^o=60^o\)
Ta có BD là tia phân giác \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)
Xét tam giác BDC có \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)
\(\Rightarrow\)tam giác BDC cân tại D
Mà DH là đường cao \(\left(DH\perp BC\right)\)
\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC
\(\Rightarrow BH=HC\)
Xét tam giác KBH và tam giác KCH có :
\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)
BH = HC
Chung KH
\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)
\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều
\(\Rightarrow\widehat{BKC}=60^o\)
Từ (1) \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)
\(\Rightarrow\widehat{BKH}=30^o\)
Xét tam giác BDK có \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)
\(\Rightarrow\Delta BDK\)cân tại D
Mà AD là đường cao \(\left(AD\perp BK\right)\)
\(\Rightarrow\)AD là trung tuyến tam giác BDK
\(\Rightarrow BA=AK\)
Xét \(\Delta KBC\)có
KH là trung tuyến ( BH = HC )
CA là trung tuyến ( BA = AK )
KH và CA cắt nhau tại D
\(\Rightarrow\)D là trọng tâm tam giác BKC
d) Ta có \(\frac{KB}{2}=AK\)( do AB = AK )
\(AD+AK>\frac{KB}{2}\)
Mà KC = KB
\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)
Vậy ...