K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có 

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

b: Ta có: ΔABM=ΔHBM

nên AM=HM

mà HM<CM

nên AM<CM

c:

Ta có: ΔBAM=ΔBHM

nên BA=BH

Xét ΔAME vuông tại A và ΔHMC vuông tại H có

MA=MH

\(\widehat{AME}=\widehat{HMC}\)

Do đó: ΔAME=ΔHMC

Suy ra: ME=MC và AE=HC

Ta có: BA+AE=BE

BH+HC=BC

mà BA=BH

và AE=HC

nên BE=BC

Ta có: BE=BC

nên B nằm trên đường trung trực của EC\(\left(1\right)\)

Ta có: ME=MC

nên M nằm trên đường trung trực của EC\(\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra BM là đường trung trực của EC

hay BM\(\perp\)EC

18 tháng 8 2021

a)  Xét △ ABM và △ HBM có: 

     \(\widehat{BAM}=\widehat{BHM}=90^0\) 

            BM chung

 \(\widehat{ABM}=\widehat{HBM}\) ( BM phân giác của \(\widehat{B}\) )

⇒ △ ABM = △ HBM ( ch - gn )

b) Vì △ ABM = △ HBM ( cmt )

⇒ AM = HM ( 2 cạnh tương ứng )

△ AME = ▲ CMH ( g - c - g )

⇒ AM = CM ( 2 cạnh tương ứng )

c)  Gọi N là giao điểm của BM và CE

Cm △ EBN = △ CBN ( c - g - c )   ( tự chứng minh nha, mik mệt quá )

\(\widehat{ENB}=\widehat{CNB}\) ( 2 góc tương ứng )

mà \(\widehat{ENB}=\widehat{CNB}=180^0\) ( kề bù )

⇒ BN ⊥ CE

⇒ BM ⊥ CE ( M ∈ BN )

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

Suy ra: MA=MH

b: Ta có: MA=MH

mà MH<MC

nên MA<MC

11 tháng 3 2023

a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:

BM là cạnh chung

\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)

b) Do \(\Delta AMB=\Delta HMB\) (cmt)

\(\Rightarrow AM=HM\) (hai cạnh tương ứng)

c) \(\Delta MHC\) vuông tại H

\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất

\(\Rightarrow HM< MC\)

Lại có HM = AM (cmt)

\(\Rightarrow AM< MC\)