K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2023

Để chứng minh điều này, ta có thể sử dụng các bước sau:

  • Chứng minh tam giác BAD cân tại B (vì BD = BA) và tam giác BAN cân tại B (vì BM là phân giác của góc A).
  • Chứng minh góc BAD = góc BAN (vì hai tam giác cân trên có hai góc ở đáy bằng nhau).
  • Chứng minh góc HAD = góc NAD (vì AN vuông góc với BD).
  • Chứng minh tam giác HAD đồng dạng với tam giác NAD (vì hai tam giác có hai góc bằng nhau).
  • Chứng minh DH/DA = NA/ND (vì hai tam giác đồng dạng trên có tỉ số các cạnh tương ứng bằng nhau).
  • Chứng minh DH/DA = AC/AB (vì NA/ND = AC/AB theo định lí Thales).
  • Chứng minh DH song song với AC (vì hai đoạn thẳng có tỉ số các cạnh tương ứng bằng nhau).

Vậy ta đã chứng minh được DH song song với AC.

6 tháng 5 2018

a) Chú ý tam giác ABD cân tại B nên BM là đường phân giác cũng là đường cao, từ đó  B M ⊥ A D .

b) Chú ý AK, BM, DH là ba đường cao của tam giác AMD.

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt...
Đọc tiếp

Bài 1: Cho tam giac ABC, M là trung điểm cua AB. Đường thẳng qua M và song song với BC cắt AC ở I và song song với AB cắt BC ở k. Chứng minh rằng: a) AM=IK b) Tam giác AMI bằng tam giác IKC c) AI=IC Bài 2: Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Trên tia đối của tia IA lấy điểm D sao cho ID=IA a) CMR tam giác BID bằng tam giác CIA b) CMR : BD vuông góc với AB c) Qua A kẻ đường thẳng song song với BC cắt đường thẳng BD tại M. C/M tam giác BAM bằng tam giác ABC d) CMR: AB là tia phân giác cuả góc DAM Bài 3: Cho tam giác ABC vuông ở A và AB=AC.Gọi K là trung điểm của BC a) C/M: tam giác AKB bằng tam giác AKC b) C/M: AK vuông góc với BC c) từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E.C/M EK song song với AK Bài 4: Cho tam giác ABC có AB=AC, kẻ BD vuông góc với AC, CE vuông góc với AB(D thuộc AC, E thuộc AB). Gọi O là giao điểm của BD và CE. CMR a) BD= CE b) tam giác OEB bằng tam giác ODC c) AO là tia phân giác cua góc BAC

1
22 tháng 11 2019

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

2 tháng 12 2018

a, Xét tam giác BAD và tam giác BKD có :

                                                     BD : cạnh chung 

                                                     BA = BK

                                                     Góc ABD = Góc DBK

==> Tam giác ABD = Tam giác KBD ( C - G - C )

==> AD = DK ( đpcm )

b, Xét tam giác ADE và tam giác KDC có :

                                                     AD = DK

                                                     Góc ADE = Góc KDC

                                                     Góc DAE = Góc DKC

==> Tam giác ADE = Tam giác KDC ( G - C - G )

c, Xét tam giác BAM và tam giác BKM có :

                                                     BM : cạnh chung 

                                                     BA = BK

                                                     Góc ABM = Góc MBK

==> Tam giác ABM = Tam giác KBM ( C - G - C )

==> Góc BMA = Góc BMK Mà Góc AMK = 180 độ

==> Góc BMA = Góc BMK = 90 độ

==> AK vuông góc với BD

Ta có hình vẽ

Tớ chỉ vẽ hình thôi còn bài tự làm nhé! g

Gợi ý:

a)    trước tiên ta xét Tam giác chứa cạnh AD và DK

Còn Muốn CM EK vuông góc vói BC thì CM nó tạo thành một góc 90 độ

b) chúng minh theo các trường hợp (c.g.c) (g.c.g) (c.c.c)

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.a,CM:BD=DEb,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CEDc,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND când,CM: DN và CK cắt nhau tại trung điểm mỗi đườngBài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của...
Đọc tiếp

Bài 1:Cho tam giác ABC có AB bé hơn AC. Tia phân giác gíc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AB=AE.

a,CM:BD=DE

b,Tia ED cắt cạnh AB kéo dài tại K . CM: Tam giác KBD= Tam giác CED

c,Qua K kẻ đường thẳng song song với BC cắt tia AD tại N.CM:Tam giác KND cân

d,CM: DN và CK cắt nhau tại trung điểm mỗi đường

Bài 2:Chotam giác ABC vuông tại A(AB nhỏ hơn AC), đường cao AH. Lấy điển K sao cho H là trung điểm của AK 

a,CM:Tam giác ABK cân và Tam giác ACK cân

b,Qua A kẻ tia Ax song song BC, qua C kẻ tia Cy song song AH. Tia Ax cắt Cy tại E . CM:AH =CE và AE vuông góc CE

c,Gọi giao điểm của AC và HE là I; CH và IK là Q . M là trung điểm của KC.CM:A;Q;M thẳng hàng

d,Tìm điều kiện của Tam giác ABC để AB song song QK

Bài 3: Cho Tam giác ABC cân tại A. Kẻ AH vuông góc BC(H thuộc BC)

a,CM: Tam giác ABH=Tam giác ACH và AH là đường trung trực của AC

b,Trên tia đối của tia BC lấy điểm M , trên tia đối của tia CB lấy điểm N sao cho BM= CN.CM:MA=NA

c,Kẻ BD vuông góc AM (D thuộc AM). CE vuông góc AN (E thuộc AN). CM:Tam giác ADE cân và DE song song MN

d,CM:Ba đường thẳng BD ;AH; CE cung đi qua 1 điểm

Các bạn giúp mình với . 6h là mình phải nộp rồi

Bạn nào nhanh thì mình tích cho

Giúp mình nhanh nha

 

 

2
1 tháng 4 2020

A B C D E K N

XÉT TAM GIÁC ABD VÀ TAM GIÁC AED 

BA=EA ( GT)

\(\widehat{BAD}=\widehat{EAD}\)( GT)

AD-CẠNH CHUNG

=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)

=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2  góc tương ứng )

b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)

   cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)

  mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)

=> \(\widehat{KBD}=\widehat{CED}\)

XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :

\(\widehat{KBD}=\widehat{CED}\)(CMT)

BD=ED ( CMT)

\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )

=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)

=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)

c) 

vì \(BC//KN\)(GT)

=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )

MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA  KD VÀ NC 

=> KD//NC

=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)

XÉT TAM GIÁC KDN VÀ TAM GIÁC CND

\(\widehat{KDN}=\widehat{CND}\)( CMT)

DN-CẠNH CHUNG

\(\widehat{CDN}=\widehat{DNK}\)(CMT)

=> TAM GIÁC KDN = TAM GIÁC CND

=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)

LẠI CÓ DC= DK ( CMT )

=> KN=DK

XÉT TAM GIÁC KDN:KN=DK

=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)

1 tháng 4 2020

ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!

a: Xét ΔMAC có 

MI là đường cao

MI là đường trung tuyến

Do đó: ΔMAC cân tại M

=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=180^0-2\cdot\widehat{ACB}\left(1\right)\)

ΔABC cân tại A

=>\(\widehat{BAC}=180^0-2\cdot\widehat{ACB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMC}=\widehat{BAC}\)

b:

ΔABC cân tại A

=>\(\widehat{ABC}=\widehat{ACB}\)

ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\)

 \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

=>\(\widehat{ABM}=180^0-\widehat{ABC}=180^0-\widehat{ACB}\left(3\right)\)

\(\widehat{CAN}+\widehat{CAM}=180^0\)(hai góc kề bù)

=>\(\widehat{CAN}+\widehat{ACB}=180^0\)

=>\(\widehat{CAN}=180^0-\widehat{ACB}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ABM}=\widehat{CAN}\)

Xét ΔABM và ΔCAN có

AB=CA

\(\widehat{ABM}=\widehat{CAN}\)

BM=AN

Do đó;ΔABM=ΔCAN

c: ΔABM=ΔCAN

=>NC=MA

mà MA=MC

nên NC=MC

\(\widehat{AMC}=\widehat{BAC}\)

mà \(\widehat{BAC}=45^0\)

nên \(\widehat{AMC}=45^0\)

Xét ΔCMN có CM=CN và \(\widehat{CMN}=45^0\)

nên ΔCMN vuông cân tại C