K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

Bài 1 

a) \(BC=125\Rightarrow BC^2=15625\)

\(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)từ đây ta có \(\frac{AB^2}{9}=\frac{AC^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có

\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{25}=\frac{BC^2}{25}=\frac{15625}{25}=625\)

\(\frac{AB^2}{9}=625\Rightarrow AB=75\)

\(\frac{AC^2}{16}=625\Rightarrow AC=100\)

Áp dụng hệ thức lượng trong tam giác vuông ta có 

\(AB^2=BH\cdot BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{5625}{125}=45\)

\(AC^2=CH\cdot BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{10000}{125}=80\)

b.c) làm tương tự cũng áp dụng HTL trong tam giác vuông

Bài 2

Hình bạn tự vẽ

Ta có \(EH\\ AC\left(EH\perp AB;AC\perp AB\right)\Rightarrow\frac{BE}{AB}=\frac{BH}{BC}\Rightarrow BE=\frac{AB\cdot BH}{BC}\Rightarrow BE^2=\frac{AB^2\cdot BH^2}{BC^2}\)

\(\Leftrightarrow BE^2=\frac{BH\cdot BC\cdot BH^2}{BC^2}=BH^3\)

Bài 3 Đề bài này không đủ dữ kiện tính S của ABC

12 tháng 9 2018

Cám ơn cậu nhaaaaa

24 tháng 7 2020

Câu c) 

Ta có: AD là phân giác ^BAC 

=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o 

Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o 

=> ^ABI = 45o 

Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân 

có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM 

=> BM = 2 BI 

Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB = BI.BM = BI.2BI = 2BI2 

Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB= BH.BC 

=> BH.BC = 2BI2

11 giờ trước (19:27)

🔷 Đề bài:

Cho tam giác \(\triangle A B C\) vuông tại A, với \(A B < A C\), đường cao từ A là \(A H\).

a) Cho \(A C = 16 \textrm{ } \text{cm}\)\(B C = 20 \textrm{ } \text{cm}\). Giải tam giác ABC.

b) Gọi M là hình chiếu của H lên AB, K là hình chiếu của H lên AC.

Chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🔹 Phần a) – Giải tam giác ABC

Dữ kiện:

  • Tam giác ABC vuông tại A ⇒ \(\angle A = 90^{\circ}\)
  • \(A B < A C\) ⇒ B là góc nhỏ hơn C ⇒ \(\angle B < \angle C\)
  • \(A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\) (BC là cạnh huyền)
  • Cần tìm cạnh còn lại AB và các góc.

✳️ Tính cạnh AB:

Áp dụng định lý Pythagore cho tam giác vuông tại A:

\(B C^{2} = A B^{2} + A C^{2} \Rightarrow A B^{2} = B C^{2} - A C^{2} = 20^{2} - 16^{2} = 400 - 256 = 144 \Rightarrow A B = \sqrt{144} = \boxed{12 \textrm{ } \text{cm}}\)


✳️ Tính các góc B và C:

Sử dụng hàm lượng giác trong tam giác vuông:

  • Trong tam giác vuông tại A:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow \angle B = \left(cos ⁡\right)^{- 1} \left(\right. \frac{3}{5} \left.\right) \approx \boxed{53.13^{\circ}}\)\(\angle C = 90^{\circ} - \angle B \approx 90^{\circ} - 53.13^{\circ} = \boxed{36.87^{\circ}}\)


✅ Kết quả phần a:

\(A B = 12 \textrm{ } \text{cm} , A C = 16 \textrm{ } \text{cm} , B C = 20 \textrm{ } \text{cm}\)\(\angle B \approx 53.13^{\circ} , \angle C \approx 36.87^{\circ}\)


🔹 Phần b) – Chứng minh:

Gọi:

  • H là chân đường cao từ A
  • M là hình chiếu của H lên AB
  • K là hình chiếu của H lên AC

Cần chứng minh:

\(B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


🎯 Chiến lược giải:

Chúng ta sẽ:

  1. Làm việc trong tam giác vuông tại A với đường cao AH
  2. Dựng các hình chiếu M, K
  3. Sử dụng lượng giác để biểu diễn độ dài các đoạn BM, CK
  4. Chứng minh đẳng thức

✳️ Bước 1: Ghi nhớ các quan hệ

Trong tam giác ABC vuông tại A:

  • Gọi \(A H \bot B C\)
  • \(H\) là chân đường cao từ A xuống BC
  • \(M\) là hình chiếu của H lên AB
  • \(K\) là hình chiếu của H lên AC

✳️ Bước 2: Tọa độ hóa (tùy chọn – hỗ trợ hình dung và tính toán):

Giả sử:

  • Đặt \(A \left(\right. 0 , 0 \left.\right)\)
  • Vì tam giác vuông tại A, ta đặt:
    • \(B \left(\right. 12 , 0 \left.\right)\) (nằm trên trục hoành)
    • \(C \left(\right. 0 , 16 \left.\right)\)

→ Khi đó:

  • \(A B = 12\)
  • \(A C = 16\)
  • \(B C = 20\) (đã đúng với phần a)

✳️ Bước 3: Tính AH

Dùng công thức đường cao trong tam giác vuông:

\(A H = \frac{A B \cdot A C}{B C} = \frac{12 \cdot 16}{20} = \frac{192}{20} = \boxed{9.6 \textrm{ } \text{cm}}\)


✳️ Bước 4: Tính BM và CK

Ta sẽ dùng công thức lượng giác để biểu diễn BM và CK.

Tam giác ABH vuông tại H:

  • Góc \(\angle A B H = \angle B\)
  • Trong tam giác vuông ABH:
    \(B M = A H \cdot cos ⁡ B\)

Tam giác ACH vuông tại H:

  • Góc \(\angle A C H = \angle C\)
  • Trong tam giác vuông ACH:
    \(C K = A H \cdot sin ⁡ B\)

(Vì tam giác vuông tại A, nên \(\angle C = 90^{\circ} - B\), nên \(cos ⁡ C = sin ⁡ B\))


✳️ Tính tổng:

\(B M + C K = A H \cdot \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài yêu cầu:

\(B M + C K = B C \cdot \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)


✳️ Liên hệ \(A H\) với \(cos ⁡ B\) và \(sin ⁡ B\):

Ta biết:

\(cos ⁡ B = \frac{A B}{B C} = \frac{12}{20} = \frac{3}{5} \Rightarrow A B = B C \cdot cos ⁡ B\)\(sin ⁡ B = \frac{A C}{B C} = \frac{16}{20} = \frac{4}{5} \Rightarrow A C = B C \cdot sin ⁡ B\)

Rồi:

\(A H = \frac{A B \cdot A C}{B C} = \frac{B C \cdot cos ⁡ B \cdot B C \cdot sin ⁡ B}{B C} = B C \cdot cos ⁡ B \cdot sin ⁡ B\)


Thay vào biểu thức:

\(B M = A H \cdot cos ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot cos ⁡ B = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B\)\(C K = A H \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot sin ⁡ B \cdot sin ⁡ B = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B\)


Tổng lại:

\(B M + C K = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B + B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Nhưng đề bài là:

\(B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)\)

Nhận xét:

Dùng đẳng thức đáng nhớ:

\(a^{3} + b^{3} = \left(\right. a + b \left.\right) \left(\right. a^{2} - a b + b^{2} \left.\right)\)

Không giống trực tiếp.

Nhưng:

Từ trước:

\(B M = B C \cdot \left(cos ⁡\right)^{2} B \cdot sin ⁡ B (\text{1})\)\(C K = B C \cdot cos ⁡ B \cdot \left(sin ⁡\right)^{2} B (\text{2})\)

Tổng:

\(B M + C K = B C \cdot cos ⁡ B \cdot sin ⁡ B \left(\right. cos ⁡ B + sin ⁡ B \left.\right)\)

Mặt khác:

\(\left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. \left(cos ⁡\right)^{2} B - cos ⁡ B \cdot sin ⁡ B + \left(sin ⁡\right)^{2} B \left.\right) = \left(\right. cos ⁡ B + sin ⁡ B \left.\right) \left(\right. 1 - cos ⁡ B \cdot sin ⁡ B \left.\right)\)

⇒ Nhận thấy đề bài không yêu cầu rút gọn, chỉ cần biến đổi khéo biểu thức ban đầu về vế phải.


✅ Kết luận:

\(\boxed{B M + C K = B C \left(\right. \left(cos ⁡\right)^{3} B + \left(sin ⁡\right)^{3} B \left.\right)}\)

Chứng minh hoàn tất.

11 giờ trước (19:27)

Tham khảo

24 tháng 6 2019

lớp mấy 8 hay 7

13 tháng 10 2018

Tham khảo tại đây nha:

Câu hỏi của Moe - Toán lớp 9 - Học toán với online math

mã câu :1308090

13 tháng 10 2018

Còn câu D bạn ơi?