Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
\(BH=BC-CH=6\)
Áp dụng HTL
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=60\\AC^2=CH\cdot BC=40\\AH^2=BH\cdot HC=24\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=2\sqrt{15}\\AC=2\sqrt{10}\\AH=2\sqrt{6}\end{matrix}\right.\)
Bài làm:
Vì tam giác ABC vuông tại A nên áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=5^2+7^2=74\)
\(\Rightarrow BC=\sqrt{74}\approx8,6\left(cm\right)\)
Ta có: \(\Delta AHB~\Delta CAB\left(g.g\right)\)
vì: \(\hept{\begin{cases}\widehat{AHB}=\widehat{CAB}=90^0\\\widehat{B}:chung\end{cases}}\)
\(\Rightarrow\frac{AH}{AB}=\frac{CA}{BC}\Leftrightarrow AH.BC=AB.AC\)
\(\Leftrightarrow8,6AH=35\Rightarrow AH\approx4,07\left(cm\right)\)
Đây mk làm tròn xấp xỉ nhé!
Học tốt!!!!
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY \(BC^2=5^2+7^2\)
\(BC^2=25+49\)
\(BC^2=74\)
\(\Rightarrow BC=\sqrt{74}\approx8,6\left(cm\right)\)
XÉT DIỆN TÍCH \(\Delta ABC\)VUÔNG CÓ
\(S_V=\frac{AB.AC}{2}\left(1\right)\)
XÉT DIỆN TÍCH \(\Delta ABC\)THƯỜNG CÓ
\(S_T=\frac{AH.BC}{2}\left(2\right)\)
CỘNG VẾ THEO VẾ (1) VÀ (2)
\(\Leftrightarrow\frac{AB.AC}{2}=\frac{AH.BC}{2}\)
\(\Leftrightarrow AB.AC=AH.BC\)
THAY \(7.5=AH.8,6\)
\(\Leftrightarrow35=AH.8,6\)
\(\Leftrightarrow AH=35:8,6\approx4,07\left(cm\right)\)
+) Xét tam giác abc vuông tại a, đường cao ah, có:
Theo hệ thức....:
ab2=bc.bh
<=> ab2=6.4
<=> ab2=24
<=> ab=2căn6(cm)
+) Xét tam giác abh vuông tại h, có:
Théo định lí Py-ta-go:
ab2=ah2.bh2
<=>(2căn6)2=ah2.42
<=>24=ah2.16
<=>ah2=8
<=>ah=2căn2(cm)
+) Xét tam giacsabc vuông tại a, có:
bc2=ab2+ac2
62=(2căn6)2+ac2
<=>36=24+ac2
<=>ac2=12
<=>ac=2căn3(cm)
Vậy ab=2căn6(cm)
ah=2căn2(cm)
ac=2căn3(cm)