Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta thấy CA và EM đề là đường cao của tam giác BCE
\(\Rightarrow\) Flà trực tâm của tam giác BCE
\(\Rightarrow\) BF vuông góc vs EC
b) ta có góc ABC + góc ACB = 90
mà góc EBC ( ABC) + góc BEM = 90
\(\Rightarrow\) góc MCF = Góc BEM ( vì cùng phụ vs góc ABC)
\(\Rightarrow\) Tam giác MBE đồng dạng vs tam giác MCF.
\(\frac{MB}{MF}=\frac{ME}{MC}\Rightarrow\frac{MB}{MF}=\frac{ME}{MB}\) ( vì MB=MC)
\(\Rightarrow\) MB2= ME . MF
a. xét tam giác ABC và tam giác HAC có
góc ACB= góc HCA ( góc chung)
góc BAC = góc AHC (=90độ)
do đó tam giác ABC đồng dạng với tam giác HAC(g.g)
b. theo bài ra ta có góc BAC=90 độ
suy ra tam giác ABC vuôg tại A
ta lại có AB=6cm, AC=8cm
suy ra AB ^2+ AC^2= BC^2
thay vào ta có 6^2+ 8^2= BC^2
suy ra BC^2= 10^2
suy ra BC = 10 (cm)
Xét tg CMD và tag CAB
( góc CMD =góc CAB =90 độ )
góc CDM = góc CBA = 30 độ
=> tg CMD đồng dạng tg CAB ( TH1)
=> CM/CA = CD/CB => CM/CD = CA/CB
Xét tg CMA và tg CDB
Góc C chung
CM/CD=CA/CB (CMT)
=> Tg CMA đồng dạng tg CDB
=>S CMA / SCDB = ( CA/CB)2
A B C E F I M
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
a: ΔABC vuông tại A
mà AM là trung tuyến
nên AM=MB=MC
=>góc MBA=góc MAB
b: góc AEF=90 độ-góc EAM=90 độ-góc B
=>gócAEF=góc ACB
c: Xét ΔAFE vuông tại A và ΔABC vuông tại A có
góc AEF=góc ACB
=>ΔAFE đồng dạng với ΔABC
=>AF/AB=AE/AC
=>AF*AC=AB*AE