K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

A B C H D I E

a) Py-ta-go \(\Delta ABH\), ta có : \(AB^2=AH^2+BH^2=25\Rightarrow AB=5\)

\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{16}{3}\)

\(AB.AC=AH.BC\)hay \(5.AC=4.\left(3+\frac{16}{3}\right)\Rightarrow AC=\frac{20}{3}\)

b) HB // DI ( cùng vuông góc AI )

\(\Rightarrow\frac{BH}{DI}=\frac{AB}{AD}=\frac{1}{2}\Rightarrow DI=2BH=6\)

\(\frac{AH}{HI}=\frac{AB}{BD}=1\)kết hợp với AH = 2HE \(\Rightarrow AH=HI=IE=4\)

\(\tan\widehat{IED}=\frac{DI}{IE}=\frac{6}{4}=\frac{3}{2}\)

\(\tan\widehat{HCE}=\frac{HE}{HC}=\frac{8}{\frac{16}{3}}=\frac{3}{2}\)

c) theo câu b, \(\Rightarrow\tan\widehat{IED}=\tan\widehat{HCE}=\frac{3}{2}\)\(\Rightarrow\widehat{IED}=\widehat{HCE}\)

d) \(\widehat{HCE}+\widehat{HEC}=90^o\Rightarrow\widehat{IED}+\widehat{HEC}=90^o\Rightarrow\widehat{DEC}=90^o\Rightarrow DE\perp EC\)

18 tháng 12 2021

Đáp án bài? 

5 tháng 2 2020

Gọi AM cắt DE tại I 

Theo tính chất hình chữ nhật ADHE : \(\widehat{E_1}=\widehat{HAC}=\widehat{MBA};\widehat{A_1}=\widehat{D_1}=\widehat{AHE}=\widehat{MCA}\)

\(\Rightarrow\widehat{A_1}=\widehat{ACM}\Rightarrow\Delta ACM\)cân tại M \(\Rightarrow MA=MC\)(*)

Do \(\Delta AID\)vuông tại I suy ra 

\(\widehat{DAM}+\widehat{D_1}=90^0\Leftrightarrow\widehat{DAM}+\widehat{DAH}=90^0\left(1\right)\)

\(\widehat{ABM}+\widehat{DAH}=90^0\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{DAM}=\widehat{ABM}\)

\(\Rightarrow\Delta ABM\)cân tại M \(\Rightarrow MA=MB\)(**)

Từ (*);(**) suy ra MB=MC hay M là trung điểm BC . Do MF//AC suy ra 

\(\widehat{MFC}=\widehat{ACF}\)

Mà 

5 tháng 2 2020

\(\widehat{ACF}=\widehat{MCF}\Rightarrow\widehat{MFC}=\widehat{MCF}\Rightarrow\Delta MFC\)cân tại M suy ra MC=MF

Mà MB=MC suy ra \(\Delta BFC\) có  FM là trung tuyến \(FM=\frac{1}{2}BC\Rightarrow\)  \(\Delta BFC\)vuông tại F hay  \(BF\perp CF\left(đpcm\right)\)

15 tháng 8 2020

a)

Có:    \(AH^2=HB.HC\left(HTL\right)\)

=>     \(16=3HC\Rightarrow HC=\frac{16}{3}\)

Lần lượt áp dụng định lí PYTAGO ta được:   

\(\hept{\begin{cases}AH^2+HB^2=AB^2\\AH^2+HC^2=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}16+9=AB^2\\16+\frac{256}{9}=AC^2\end{cases}}\)

=>    \(\hept{\begin{cases}AB=5\\AC=\frac{20}{3}\end{cases}}\)

b) Có:  BH và DI cùng vuông góc với EI 

=> BH // DI

=> ÁP DỤNG ĐỊNH LÍ TALET TA ĐƯỢC:

=> \(\frac{AB}{AD}=\frac{AH}{AI}=\frac{BH}{DI}\)

Mà:    \(\frac{AB}{AD}=\frac{1}{2}\left(gt\right)\)

=>   \(\frac{AH}{AI}=\frac{BH}{DI}=\frac{1}{2}\)

=>   \(AH=HI\)

=>    \(DI=6;HI=4\)

MÀ:    \(EA=AH\left(gt\right)=4\)

=> DIện tích tam giác IED \(=\frac{ID.IE}{2}=\frac{6.12}{2}=36\)

Có: \(HC=\frac{16}{3};HE=8\left(CMT\right)\)

=> Diện tích tam giác HCE    \(=\frac{HC.HE}{2}=\frac{16}{3}.8:2=\frac{64}{3}\)

Câu c xem lại đề nha, mình vẽ thì DE ko vuông góc với EC đâu nhaaaaaaa

a) Chứng minh : BHCK là hình bình hành 

Xét tứ giác BHCK có : MH = MK = HK/2

                                     MB = MI = BC/2 

Suy ra : BHCK là hình bình hành 

b) BK vuông góc AB và CK vuông góc AC

Vì BHCK là hình bình hành ( cmt ) 

Suy ra : BK // HC và CK // BH ( tính chất hình bình hành )

mà CH vuông góc AB = F và BH vuông góc AC = E ( gt )

Suy ra : BK vuông góc AB và CK vuông góc AC ( Từ vuông góc đến // )

c) Chứng minh : BIKC là hình thang cân 

Vì I đối xứng với H qua BC nên BC là đường trung bình của HI 

Mà M thuộc BC    Suy ra : MH = MI ( tính chất đường trung trực ) 

mà MH = MK = HK/2 (gt)

Suy ra : MI = MH = MK = 1/2 HC 

Suy ra : Tam giác HIK vuông góc tại I 

mà BC vuông góc HI (gt)

Suy ra : IC // BC 

Suy ra : BICK là hình thang  (1) 

Ta có : BC là đường trung trực của HI (cmt) 

Suy ra : CI = CH 

 

 

2 tháng 5 2022

Tham khảo?

c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AI là đường cao ứng với cạnh huyền BD, ta được:

\(BI\cdot BD=AB^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(BH\cdot BC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BI\cdot BD=BH\cdot BC\)

DD
21 tháng 7 2021

a) Xét tam giác \(AHB\)vuông tại \(H\)

\(AB^2=AH^2+HB^2\)(định lí Pythagore) 

\(\Rightarrow AB=\sqrt{AH^2+HB^2}=\sqrt{4^2+3^2}=5\left(cm\right)\)

Xét tam giác \(ABC\)vuông tại \(A\)đường cao \(AH\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{4^2}-\frac{1}{5^2}\)

\(\Rightarrow AC=\frac{20}{3}\left(cm\right)\)

\(BC^2=AB^2+AC^2\)(định lí Pythagore) 

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{25+\frac{400}{9}}=\frac{25}{3}\left(cm\right)\)

\(HC=BC-HB=\frac{25}{3}-3=\frac{16}{3}\left(cm\right)\)

b) Xét tam giác \(AID\)có: \(B\)là trung điểm của \(AD\)

\(BH//ID\)(vì cùng vuông góc với \(AI\)

nên \(BH\)là đường trung bình của tam giác \(AID\).

Suy ra \(H\)là trung điểm của \(AI\).

\(\Rightarrow AH=HI\Rightarrow HI=\frac{1}{2}HE\)

do đó \(I\)là trung điểm của \(HE\).

\(P=2tan\widehat{IED}-3tan\widehat{ECH}\)

\(=2\frac{ID}{IE}-3\frac{CH}{HE}\)

\(=\frac{4HB}{AH}-\frac{3}{2}\frac{CH}{AH}\)

\(=\frac{8.3-3.\frac{16}{3}}{2.4}=1\)

c) \(tan\widehat{IED}=\frac{ID}{IE}=\frac{2HB}{AH}=\frac{2.3}{4}=\frac{3}{2}\)

\(cot\widehat{CEH}=\frac{EH}{CH}=\frac{2AH}{CH}=\frac{2.4}{\frac{16}{3}}=\frac{3}{2}\)

\(tan\widehat{IED}=cot\widehat{CEH}\Rightarrow\widehat{IED}+\widehat{CEH}=90^o\Rightarrow\widehat{CED}=90^o\)

do đó ta có đpcm. 

18 tháng 10 2021

b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)