K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

a, Có ∠BAH= ∠BCA (vì cùng phụ với ∠HAC)

=> ∠BAH+ ∠HAD= ∠BCA + ∠DAC (vì AD là tia phân giác ∠HAC)

=> ∠BAD= ∠BCA + ∠DAC 

Xét ΔADC có ∠ADB là góc ngoài tại D => ∠ADB= ∠BCA + ∠DAC 

=> ∠BAD= ∠ADB

=> ΔABD cân tại B

b, Xét ΔABD cân tại B => AB= BD

Xét ΔABC vuông tại A

=> AB²= BH. BC

            = (BD- HD). BC

            = (AB- 6). 25

            = 25 AB- 150

=> AB²- 25AB+ 150= 0

<=> (AB-15)(AB-10)= 0 

<=> AB= 15 hoặc AB= 10

Vậy AB= 15cm, hoặc AB= 10 cm

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm. 

29 tháng 10 2021

a: Xét (O) có

ΔBNC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBNC vuông tại N

Xét (O) có 

ΔBMC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBMC vuông tại M

Xét ΔABC có

BN là đường cao

CM là đường cao

BN cắt CM tại H

Do đó: AH\(\perp\)BC

22 tháng 8 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{HB}{HC}\)(đpcm)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB, ta được:

\(BD\cdot BA=BH^2\)

\(\Leftrightarrow BD=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(CE\cdot CA=CH^2\)

\(\Leftrightarrow EC=\dfrac{HC^2}{AC}\)

Ta có: \(\dfrac{BD}{EC}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{HB}{HC}\right)^2\cdot\dfrac{AC}{AB}\)

\(\Leftrightarrow\dfrac{BD}{EC}=\left(\dfrac{AB}{AC}\right)^4\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)(đpcm)

13 tháng 10 2023

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH=6(cm)

b: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=180^0\)

=>ADHE là tứ giác nội tiếp

=>A,D,H,E cùng nằm trên 1 đường tròn

c: \(\widehat{CAK}+\widehat{BAK}=90^0\)

\(\widehat{CKA}+\widehat{HAK}=90^0\)

mà \(\widehat{BAK}=\widehat{HAK}\)

nên \(\widehat{CAK}=\widehat{CKA}\)

=>ΔCAK cân tại C

ΔCAK cân tại C

mà CI là đường trung tuyến

nên CI là đường cao

=>CI vuông góc AK

13 tháng 10 2023

 bạn vẽ hình có đc k ah ?

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại I

b: Ta có: \(\widehat{AMO}=\widehat{ANO}=\widehat{AIO}\)

=>A,M,I,O,N cùng thuộc đường tròn đường kính AO

Gọi I là trung điểm của AO

=>A,M,I,O,N cùng thuộc (I)

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: OA là phân giác của góc MON

=>\(\widehat{MOA}=\widehat{NOA}\)

Xét (I) có

\(\widehat{MOA}\) là góc nội tiếp chắn cung MA

\(\widehat{NOA}\) là góc nội tiếp chắn cung NA

\(\widehat{MOA}=\widehat{NOA}\)

Do đó: \(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\)

Xét (I) có

\(\widehat{MIA}\) là góc nội tiếp chắn cung MA

\(\widehat{NIA}\) là góc nội tiếp chắn cung NA

\(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\left(cmt\right)\)

Do đó: \(\widehat{MIA}=\widehat{NIA}\)

=>IA là phân giác của góc MIN