Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)
\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{HAB}=\widehat{C}\)
- Xét tg AHB và tg CHA có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)
(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)
b) Xét tg BAH vuông tại H có :
AB2=BH2+AH2 (Pytago)
=>152=BH2+122
=>225=BH2+144
=>BH2=81
=>BH=9cm
- Do tg AHB đồng dạng tg CHA (cmt)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)
\(\Rightarrow HC=16cm\)
- Có : HB+HC=BC
=> BC=9+16=25
- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)
#H
(Ý c,d để suy nghĩ tiếp)
A B C H 15 12 M
a, Xét tam giác AHB và tam giác CAB ta có :
^AHB = ^A = 900
^B _ chung
Vậy tam giác AHB ~ tam giác CAB ( g.g ) (1)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^A = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2)
Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC
b, Áp dụng định lí Py ta go cho tam giác AHB ta có :
\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm
Ta có tam giác AHB ~ tam giác AHC ( cma )
\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm
Áp dụng Py ta go cho tam giác AHC ta có :
\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm
c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)
mà \(BM=BC-MC=18-MC\)
do \(BC=BH+HC=9+9=18\)cm
\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm
\(\Rightarrow BM=BC-MC=18-9=9\)
( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )
\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)
thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy
bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé
tự vẽ hình nhé
a, ta có <HBA+<BAH =90
<BAH + <HAC=90
\(\Rightarrow\) <HBA=<HAC
xét \(\Delta AHB\) và \(\Delta CHA\)
<HBA=<HAC
<BHA=<CHA=90
\(\Rightarrow\Delta AHB\) ~\(\Delta CHA\)
b, Xét \(\Delta ABH\) vg tại H, áp dụng đl Py ta go ta đc
\(AH^2+BH^2=AB^2\\ \Rightarrow BH=9\)
Ta có \(\Delta ABH\) ~ \(\Delta CAH\)
\(\dfrac{\Rightarrow BH}{AH}=\dfrac{AH}{CH}\Rightarrow AH^2=BH\cdot CH\)
\(\Rightarrow CH=16\)
Xét \(\Delta AHC\) cg tại H, áp dụng ĐL py ta go ta đc
\(AH^2+CH^2=AC^2\Rightarrow AC=20\)
c, xét \(\Delta ABC\) vg tại A áp dụng đl Py ta go ta đc
\(AB^2+AC^2=BC^2\Rightarrow BC=25\)
Ta có AM là tia pg của <BAC
\(\dfrac{MB}{AB}=\dfrac{MC}{AC}\Rightarrow\dfrac{MB+MC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{5}{7}\\ \Rightarrow MB=10,7\)
a) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{CAH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
\(\widehat{BAC}=90^0\)
Do đó: ABDC là hình chữ nhật
b: Xét ΔADE có
M,H lần lượt là trung điểm của AD,AE
=>MH là đường trung bình
=>MH//DE
=>DE vuông góc AE
Xét tứ giác ABED có \(\widehat{ABD}=\widehat{AED}=90^0\)
=>ABED là tứ giác nội tiếp
=>\(\widehat{BDE}=\widehat{EAB}\)
=>\(\widehat{BDE}=\widehat{HAB}=\widehat{C}\)
=>\(\widehat{BDE}=\widehat{C}\)
mà \(\widehat{ACB}=\widehat{ADB}\)
nên \(\widehat{BDE}=\widehat{ADB}\)
=>DB là phân giác của \(\widehat{ADE}\)
a, Vì AE là vừa là đg cao (AE⊥HM) vừa là trung tuyến nên tg AHM cân tại A
Do đó AH=AM
Vì AF là vừa là đg cao (AF⊥HN) vừa là trung tuyến nên tg AHN cân tại A
Do đó AH=AN
Từ đó ta được AM=AN hay tg AMN cân tại A
b, Vì E,F là trung điểm HM,HN nên EF là đtb tg MHN
Do đó EF//MN
c, Vì AI là trung tuyến tg AMN cân tại A nên AI cũng là đg cao
Do đó AI⊥MN
Mà EF//MN nên AI⊥EF
d, Vì tg AEH và tg AFH cân tại A nên AE,AF lần lượt là p/g \(\widehat{MAH}\) và \(\widehat{NAH}\)
Do đó \(\widehat{MAN}=\widehat{MAH}+\widehat{NAH}=2\cdot\widehat{EAH}+2\cdot\widehat{FAH}=2\cdot\widehat{BAC}\)
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc CAB=90 độ
Do đó: ABDC là hình chữ nhật
a) Xét tứ giác EHFA có :
BAC = 90*
HF \(\perp\)AC(gt)
HE\(\perp\)AB (gt)
=> EHFA là hình chữ nhật
=> AH = EF
b) Vì EHFA là hình chữ nhật (cmt)
=> EH//AF , EH= AF
Mà E là trung điểm PH
=> PE = EH
=> PE = AF
Xét tứ giác PEFA có :
PE = AF
PE// AF ( EH//AF , E\(\in\)PH )
=> PEFA là hình bình hành
d) Vì PEFA là hình bình hành (cmt)
=> FE//PA (1)
Ta có : HF = FQ (gt)
MÀ HF = EA
=> FQ = EA
Xét \(\Delta HAQ\)có :
AF là trung trực
=> \(\Delta HAQ\) cân tại A
=> AH = AQ
Mà AH = EF (cmt)
=> EF = AQ
Xét tứ giác EFQA ta có :
EF = AQ
EA = FQ
=> EFQA là hình bình hành
=> EF// AQ(2)
(1)(2) => P,A,Q thẳng hàng
a: Xét tứ giác AHCE có
I là trung điểm chung của AC và HE
góc AHC=90 độ
=>AHCE là hình chữ nhật
b: Xét ΔAHC có
HI,AM là trung tuyến
HI cắt AM tại G
=>G là trọng tâm
=>HG=2/3HI=2/3*1/2*HE=1/3HE
Xét ΔCAE có
AN,EI là trung tuyến
AN cắt EI tại K
=>K là trọng tâm
=>EK=2/3EI=1/3EH
HG+GK+KE=HE
=>GK=HE-1/3HE-1/3HE=1/3HE
=>HG=GK=KE
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD