Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có đôi chỗ mình làm tắt nhé, hình hết chỗ vẽ nên mình vẽ tạm xuống dưới nhé
a, Ta có : \(S_{AHM}=\frac{1}{2}.AH.HM\)(*)
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=400+225=625\Rightarrow BC=25\)cm
Vì AM là đường trung tuyến : \(BM=CM=\frac{BC}{2}=\frac{25}{2}\)cm
Dễ có : \(AB^2=BH.BC\)( dựa vào tỉ số đồng dạng nhé )
\(\Rightarrow BH=\frac{AB^2}{BC}=9\)cm
Mà \(BM=BH+HM\Rightarrow HM=BM-BH=\frac{25}{2}-9=\frac{7}{2}\)cm
Lại có : \(BC=BH+CH\Rightarrow CH=BC-BH=25-9=16\)cm
Dễ có : \(AH^2=CH.BH=16.9=144\Rightarrow AH=12\)cm
Thay vào (*) ta được :
Vậy : \(S_{AHM}=\frac{1}{2}.12.\frac{7}{2}=\frac{84}{4}=21\)cm2
a: Sửa đề: BC=10cm và ΔABC vuông tại A
\(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
b: Kẻ AH vuông góc BC
\(S_{ABM}=\dfrac{1}{2}\cdot AH\cdot BM\)
\(S_{ACM}=\dfrac{1}{2}\cdot AH\cdot CM\)
mà BM=CM
nên \(S_{ABM}=S_{ACM}\)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
b: Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
=>\(AD=DB=\dfrac{AB}{2}=2\left(cm\right)\)
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
=>\(AE=EC=\dfrac{AC}{2}=3\left(cm\right)\)
Diện tích hình chữ nhật ADME là:
\(S_{ADME}=AD\cdot AE=2\cdot3=6\left(cm^2\right)\)
c: Để hình chữ nhật ADME trở thành hình vuông thì AD=AE
mà AD=AB/2; AE=AC/2
nên AB=AC