K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3AC}{4}=0,75.AC\)

\(\Delta ABC\left(\widehat{A}=90^o\right)\)có:

\(AB^2+AC^2=BC^2\left(Pytago\right)\)

\(\Leftrightarrow\left(0,75.AC\right)^2+AC^2=30^2\)

\(\Leftrightarrow0,5625AC^2+AC^2=900\)

\(\Leftrightarrow1,5625AC^2=900\)

\(\Leftrightarrow AC^2=576\Leftrightarrow AC=24\)(cm)

\(\Rightarrow AB=0,75.AC=0,75.24=18\)(cm)

\(S_{ABC}=\frac{AB.AC}{2}=\frac{18.24}{2}=216\left(cm^2\right)\)

16 tháng 8 2016

làm giùm mk vs mk cần gấp lắm

1: \(S=\dfrac{8\cdot6}{2}=24\left(cm^2\right)\)

2: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=HC\cdot BC\)

3: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

=>AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN∼ΔACB

4 tháng 3 2022

TK

1: S = 8 ⋅ 6 2 = 24 ( c m 2 ) 2: Xét ΔABC vuông tại A có AH là đường cao nên A C 2 = H C ⋅ B C 3: Xét ΔAHB vuông tại H có HM là đường cao nên A M ⋅ A B = A H 2 ( 1 ) Xét ΔAHC vuông tại H có HN là đường cao nên A N ⋅ A C = A H 2 ( 2 ) Từ (1) và (2) suy ra A M ⋅ A B = A N ⋅ A C =>AM/AC=AN/AB Xét ΔAMN vuông tại A và ΔACB vuông tại A có AM/AC=AN/AB Do đó: ΔAMN∼ΔACB

28 tháng 11 2023

a: Xét ΔCBA có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{30}=\dfrac{CD}{40}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=50

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{50}{7}\)

=>\(BD=\dfrac{150}{7}\left(cm\right);CD=\dfrac{200}{7}\left(cm\right)\)

Xét ΔABC có DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{CB}\)

=>\(\dfrac{DE}{30}=\dfrac{200}{7}:50=\dfrac{4}{7}\)

=>\(DE=\dfrac{120}{7}\left(cm\right)\)

b: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

=>Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot30\cdot40=15\cdot40=600\left(cm^2\right)\)

28 tháng 11 2023

bạn tính cho mik diện tích tam giác adb,ade và dce vs

 

a: BC=căn 12^2+16^2=20cm

Xét ΔABC có AD là phân giác

nên BD/DC=AB/AC=3/4

=>BD/3=DC/4=(BD+DC)/(3+4)=20/7

=>BD=60/7cm; DC=80/7cm

Xét ΔCAB có ED//AB

nên ED/AB=CD/CB=4/7

=>ED/12=4/7

=>ED=48/7cm

b: S ABC=1/2*12*16=96cm2

BD/BC=3/7

=>S ABD/S ABC=3/7

=>S ABD=288/7cm2

3 tháng 1 2019

66,125

18 tháng 12 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi M là trung điểm của BC, ta có:

AM = MB = 1/2 BC = a (tính chất tam giác vuông)

Suy ra MA = MB = AB = a

Suy ra ∆ AMB đều ⇒  ∠ (ABC) = 60 0

Mặt khác:  ∠ (ABC) +  ∠ (ACB) =  90 0  (tính chất tam giác vuông)

Suy ra:  ∠ (ACB) =  90 0  - ∠ (ABC) =  90 0  –  60 0  =  30 0

Trong tam giác vuông ABC, theo Pi-ta-go, ta có: B C 2 = A B 2 + A C 2

⇒  A C 2 = B C 2 - A B 2 = 4 a 2 - a 2 = 3 a 2 ⇒ AC = a 3

Vậy S A B C  = 1/2 .AB.AC

=  1 2 a . a 3 = a 2 3 2   ( đ v d t )

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔEBC vuông tại E có 

\(\widehat{ABD}=\widehat{EBC}\)(BE là tia phân giác của \(\widehat{ABC}\))

Do đó: ΔABD\(\sim\)ΔEBC(g-g)