K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

14 tháng 5 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

 Trên tia đối AB lấy I sao cho AI = AB 
- Vẽ hình chữ nhật AINC ( IN // AC ; IN = AC )
Do AB = 1/3 AC => AD = AB => AD=AI . Lấy M thuộc IN sao cho IM = AD 
Ta có hình vuông IAMD => IA = IM = MD = DA 
Xét [​IMG]MBI và [​IMG]CMN 
MI=NC (và IANC là hình chữ nhật)
BI=MN ( vì[​IMG] và IA = IM \Rightarrow [​IMG])
[​IMG] (gt)
\Leftrightarrow [​IMG]MBI = [​IMG]CMI (c - g - c)
\Rightarrow [​IMG] ; BM = CM \Rightarrow [​IMG] BMC cân ở M (|-)1)
Xét [​IMG]BIM và [​IMG]EAB 
AB = MI 
AE = BI 
[​IMG]
\Leftrightarrow [​IMG]BIM = [​IMG]EAB (c - g - c)
\Rightarrow [​IMG] (góc tương ứng)

Ta có:
[​IMG]
Mà: [​IMG] 
\Rightarrow [​IMG] 
\Rightarrow [​IMG]BMC vuông ở M :)-*2)

Từ (|-)1) và :)-*2) 
\Rightarrow [​IMG]MCB vuông cân ở M 
\Rightarrow [​IMG] hay [​IMG] 
Lại có:
[​IMG]
\Rightarrow [​IMG] (đpcm)
:-*:-*:-*:-*:-*|-)|-)|-):-SS:-SS:D:D:D:D:D;););)

;);)

Cách 1: 
Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o.

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.Bài...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

10 tháng 8 2016

GIẢI:

 

a) Xét Δ ABC và Δ AED, ta có :

\widehat{BAC}= \widehat{DAC}=90^0 (đối đỉnh)

AB = AD (gt)

AC = AD (gt)

=> Δ ABC = Δ AED (hai cạnh góc vuông)

=> BC = DE

Xét Δ ABD, ta có :

\widehat{BAC}=90^0 (Δ ABC vuông tại A)

=> AD \bot  AE

=>  \widehat{BAD}=90^0

=> Δ ABD vuông tại A.

mà : AB = AD (gt)

=> Δ ABD vuông cân tại A.

=>\widehat{BDC}=45^0

cmtt : \widehat{BCE}=45^0

=> \widehat{BDC}=\widehat{BCE}=45^0

mà : \widehat{BDC},\widehat{BCE} ở vị trí so le trong

=> BD // CE

b) Xét Δ MNC, ta có :

NK \bot  MC = > NK là đường cao thứ 1.

MH \bot  NC = > MH là đường cao thứ 2.

NK cắt MH tại A.

=> A là trực tâm. = > CA là đường cao thứ 3.

=> MN \bot  AC tại I.

mà : AB \bot  AC

=> MN // AB.

c) Xét Δ AMC, ta có :

 \widehat{MAE}= \widehat{BAH} (đối đỉnh)

\widehat{MEA}= \widehat{BCA} (Δ ABC = Δ AED)

=>\widehat{MAE}=\widehat{MEA} (cùng phụ góc ABC)

=> Δ AMC cân tại M

=> AM = ME (1)

Xét Δ AMI và Δ DMI, ta có :

\widehat{AIM }= \widehat{DIM}=90^0 (MN \bot  AC tại I)

IM cạnh chung.

mặt khác : \widehat{IMA }= \widehat{MAE} (so le trong)

\widehat{DMI }= \widehat{MEA} (đồng vị)

mà : \widehat{MAE}=\widehat{MEA} (cmt)

=> \widehat{IMA }= \widehat{IMD}

=> Δ AMI = Δ DMI (góc nhọn – cạnh góc vuông)

=> MA = MD (2)

từ (1) và (2), suy ta : MA = ME = MD

ta lại có : ME = MD = DE/2 (D, M, E thẳng hàng)

=>MA = DE/2.

29 tháng 6 2020

từ cách vẽ hình

 

2 tháng 8 2018

B A C O D E F S M N S'

1) Theo t/c góc tạo bởi tia tiếp và dây cung: \(\widehat{BCA}=\widehat{BAD}\). Dễ có \(\widehat{BCA}=\widehat{BAC}=30^0\)

\(\Rightarrow\widehat{BAD}=30^0\)\(\Rightarrow\widehat{BAC}+\widehat{BAD}=60^0\Rightarrow\widehat{DAC}=60^0\). Đồng thời \(\widehat{BAC}=\widehat{BAD}\)

=> AB là tia phân giác trong tam giác ADC

Xét \(\Delta\)ADC có: \(\widehat{DAC}=60^0;\widehat{DCA}=\widehat{BCA}=30^0\)

=> \(\Delta\)ADC vuông tại D. Hay \(\Delta\)ADC nửa đều => \(\frac{AD}{AC}=\frac{1}{2}\)

Ta có: AB là phân giác trong tam giác ADC (cmt) \(\Rightarrow\frac{AD}{AC}=\frac{DB}{CB}=\frac{1}{2}\Rightarrow\frac{DB}{DC}=\frac{1}{3}\)

2) Dễ thấy \(\widehat{ABD}=\widehat{BAC}+\widehat{BCA}=60^0\). Xét \(\Delta\)ADB:

\(\widehat{ADB}=90^0\)(cmt); \(\widehat{ABD}=60^0\)=> \(\Delta\)ADB nửa đều => BD = 1/2 AB

Áp dụng ĐL Pytagore cho \(\Delta\)ADB nửa đều: 

\(AD^2=AB^2-BD^2=AB^2-\frac{1}{4}.AB^2=\frac{3}{4}.AB^2\)\(\Leftrightarrow AD=\frac{\sqrt{3}}{2}.AB\)

\(\Leftrightarrow\frac{AB}{AD}=\frac{2}{\sqrt{3}}\)(1)

Tương tự với tam giác ANB nửa đều: \(\frac{AB}{AN}=\frac{2}{\sqrt{3}}\Leftrightarrow\frac{AB}{2AN}=\frac{1}{\sqrt{3}}\)

\(\Rightarrow\frac{AB}{AC}=\frac{1}{\sqrt{3}}\)(2)

Cộng (1) với (2) \(\Rightarrow\frac{AB}{AD}+\frac{AB}{AC}=\frac{3}{\sqrt{3}}=\sqrt{3}\Leftrightarrow\frac{1}{AD}+\frac{1}{AC}=\frac{\sqrt{3}}{AB}\)(đpcm).

3) Gọi giao điểm của NE với AO là S; MF với AO là S'. Ta đi c/m S trùng với S' .

Dễ thấy: \(\widehat{OBC}=180^0-\widehat{ABD}-\widehat{ABN}=60^0\)\(\Rightarrow\widehat{OCB}=60^0\)

Mà \(\widehat{ABD}=60^0\Rightarrow\widehat{OCB}=\widehat{ABD}\). Do 2 góc này đồng vị nên AB // OC

Hay BE // OC \(\Rightarrow\frac{DB}{CB}=\frac{DE}{OE}\)(ĐL Thales) . Mà \(\frac{DB}{CB}=\frac{1}{2}\)(câu b)

\(\Rightarrow\frac{DE}{OE}=\frac{1}{2}\). Lại có: \(\frac{DE}{OE}=\frac{BE}{AE}\Rightarrow\frac{BE}{AE}=\frac{1}{2}\)(Hệ quả ĐL Thales)

Tứ giác ABCO có: AB // OC; AO // OB (Cùng vuông góc AD); AC vuông BO

=> Tứ giác ABCO là hình thoi. N là trung điểm AC => N cũng là trung điểm BO => \(\frac{ON}{BN}=1\)

Nhận thấy \(\Delta\)ABO có: E thuộc AB; N thuộc OB; NE cắt AO ở S

\(\Rightarrow\frac{BE}{AE}.\frac{ON}{BN}.\frac{SA}{SO}=1\)(ĐL Menelaus)

Thay \(\frac{BE}{AE}=\frac{1}{2};\frac{ON}{BN}=1\Rightarrow\frac{SA}{SO}.\frac{1}{2}=1\Leftrightarrow\frac{SA}{SO}=2\Leftrightarrow\frac{SA}{AO}=2\)(*)

Áp dụng hệ quả ĐL Thales: \(\frac{OF}{EF}=\frac{OC}{AE}=\frac{AB}{AE}\)(Do OC=AB)

Lại có: \(\frac{BE}{AE}=\frac{1}{2}\Rightarrow\frac{AB}{AE}=\frac{3}{2}\)\(\Rightarrow\frac{OF}{EF}=\frac{3}{2}\)

Vì \(\frac{BE}{AB}=\frac{1}{3}\Rightarrow\frac{BE}{\frac{1}{2}.AB}=\frac{2}{3}\Rightarrow\frac{BE}{BM}=\frac{2}{3}\Rightarrow\frac{EM}{BM}=\frac{1}{3}\). Mà BM=AM

\(\Rightarrow\frac{EM}{AM}=\frac{1}{3}\). Ta áp dụng ĐL Menelaus với \(\Delta\)AEO:

\(\frac{OF}{EF}.\frac{BE}{EM}.\frac{S'A}{S'O}=1\). Thế \(\frac{EM}{AM}=\frac{1}{3};\frac{OF}{EF}=\frac{3}{2}\)(cmt)

\(\Rightarrow\frac{S'A}{S'O}.\frac{1}{3}.\frac{3}{2}=1\Rightarrow\frac{S'A}{S'O}=2\Rightarrow\frac{S'A}{AO}=2\)(**)

Từ (*) và (**) suy ra \(SA=S'A\). Mà 3 điểm A;S;S' thẳng hàng

Nên S trùng với S' => 3 đường AO;MF;NE gặp nhau tại 1 điểm (đpcm).

2 tháng 8 2018

Tỉ số \(\frac{DB}{CB}=\frac{1}{2}\) được lấy từ ý 1) nhé, quen tay nên gõ nhầm.