Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
a: BC=căn 9^2+12^2=15cm
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=15/7
=>BD=45/7cm; CD=60/7cm
AH=9*12/15=108/15=7,2cm
b: Xét ΔHAC vuông tại H và ΔMEA vuông tại M có
góc HCA=góc MAE
=>ΔHAC đồng dạng với ΔMEA
a: BC=15cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
a.
Vì ΔABC vuông tại A nên theo định lí Py - ta - go:
BC2 = AB2 + AC2
BC2 = 92 + 122
\(\Rightarrow\) BC2 = 225
\(\Rightarrow\) BC2 = \(\sqrt{225}\) = 15 cm
b. Xét ΔABC và Δ HBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) Δ HBA (g.g)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
b: ΔHAB vuông tại H có HM vuông góc AB
nên MH^2=MA*MB
a: Xét ΔDCE vuông tại D và ΔDFB vuông tại D có
\(\widehat{DCE}=\widehat{DFB}\)
Do đó: ΔDCE\(\sim\)ΔDFB
Suy ra: DC/DF=DE/DB
hay \(DC\cdot DB=DF\cdot DE\)
b: \(AH=\sqrt{HB\cdot HC}=6\left(cm\right)\)
Tam giác ABC vuông tại A. Áp dụng Pitago
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow9^2+12^2=BC^2\)
\(\Rightarrow BC=15\)
Xét tam giác ABC và tam giác AHC ta có:
Góc C: chung
Góc BAC = Góc AHC (=900)
=> Tam giác ABC ~ Tam giác HAC (g - g)
\(\Rightarrow\dfrac{AC}{HC}=\dfrac{BC}{AC}\)
\(\Rightarrow\dfrac{12}{HC}=\dfrac{15}{12}=\dfrac{5}{4}\)
\(\Rightarrow HC=12:\dfrac{5}{4}=12.\dfrac{4}{5}=9,6\left(cm\right)\)