K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

A B C D N M

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có BD là đường phân giác trong của tam giác ABC (gt)

\(\Rightarrow\frac{AD}{DC}=\frac{AB}{BC}\)( tc)

\(\Rightarrow\frac{AD}{DC}=\frac{3}{5}\)

\(\Rightarrow\frac{AD}{3}=\frac{DC}{5}=\frac{AD+DC}{3+5}=\frac{AC}{8}=\frac{8}{8}=1\)( tc của dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{cases}}\)

b) Xét tứ giác BMDN có \(\hept{\begin{cases}MD//BN\left(MD//BC,N\in BC\right)\\ND//MB\left(ND//AB,M\in AB\right)\end{cases}}\)\(\Rightarrow BMND\)là hình bình hành ( dhnb) (3) 

Xét tam giác ABC có: \(MD//BC\left(gt\right)\)

\(\Rightarrow\frac{AD}{AC}=\frac{MD}{BC}\)( hệ quả của định lý Ta-let) 

\(\Rightarrow\frac{3}{8}=\frac{MD}{10}\)

\(\Rightarrow MD=3,75\left(cm\right)\left(1\right)\)

Xét tam giác ABC có \(ND//AB\left(gt\right)\) 

\(\Rightarrow\frac{DC}{AC}=\frac{ND}{AB}\)( hệ quả của định lý ta-let) 

\(\Rightarrow\frac{5}{8}=\frac{ND}{6}\)

\(\Rightarrow ND=3,75\left(cm\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow ND=MD\) (4)

Từ (3) và (4) \(\Rightarrow BMDN\)là hình thoi (dhnb)

c) \(S_{BMDN}=4.3,75=15\left(cm\right)\)

24 tháng 2 2021

Giúp mk vs

 

11 tháng 4 2022

undefined

21 tháng 12 2019

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = 21 2 + 28 2 = 1225  

Suy ra: BC = 35 (cm)

Vì AD là đường phân giác của ∠ (BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (t/chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy DC = BC – BD = 35 – 15 = 20cm

Trong ΔABC ta có: DE // AB

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (Hệ quả định lí Ta-lét)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

a) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{BC}{14}=\dfrac{7}{14}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{6}=\dfrac{1}{2}\\\dfrac{CD}{8}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=3\left(cm\right)\\CD=4\left(cm\right)\end{matrix}\right.\)

Vậy: BD=3cm; CD=4cm