K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2018

a) Áp dụng định lý piTaGo vào tam giác vuông ABC ( gt )

\(\Rightarrow Bc=10\left(cm\right)\)

Ta có: \(\dfrac{DC}{DA}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{DC}{DC+DA}=\dfrac{5}{5+3}\)\(\Rightarrow\dfrac{DC}{8}=\dfrac{5}{8}\Rightarrow DC=\dfrac{8.5}{8}=5\left(cm\right)\)

\(\Rightarrow AD=AC-DC=8-5=3\left(cm\right)\)

b) Xét tam giác ABD và tam giác HBI ta có:

\(\widehat{CBD}=\widehat{DBA}\)

\(\widehat{CAB}=\widehat{IHB}\left(=1v\right)\)

\(\Rightarrow\Delta ABD\sim\Delta HBI\)

\(\Rightarrow AB.BI=BD.BH\)

31 tháng 3 2018

mk ko biet

Câu a

tính cạnh BC 

Xét tam giác ABC vuông tại A  ta có 

BC^2 = AB^2 + AC^2

hay BC^2 = 6^2 + 8^2

=> BC = 10 (cm)

còn những câu còn lại mình ko bt T_T

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc ABH chung

=>ΔABH đồng dạng với ΔCBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=8/8=1

=>AD=3cm; CD=5cm

c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có

góc HBI=góc ABD

=>ΔBHI đồng dạng với ΔBAD

=>BH/BA=BI/BD

=>BH*BD=BA*BI

22 tháng 4 2018

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)

a: BC=10cm

Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạngvới ΔHBA

b: AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

CH=10-3,6=6,4cm