K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ôn tập toán 7Ôn tập toán 7Ôn tập toán 7Ôn tập toán 7

mk o trã lời câu hỏi này mà mk trả lời câu hôm qua bn hỏi

thông cảm nha!mk ở thể gửi câu trả lời đúng câu hỏi của nó vì mk găp 1 vài vấn đề

leuleubucminhgianroi

4 tháng 5 2017

à dạ bạn.. ko sao.. mơn bạn nhiều lắm ạvui

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=4,5^2+6^2=56,25\)

=>\(BC=\sqrt{56,25}=7,5\left(cm\right)\)

b: CN\(\perp\)CA

AB\(\perp\)CA

Do đó: CN//AB

Xét ΔMCN và ΔMBA có

\(\widehat{MCN}=\widehat{MBA}\)(hai góc so le trong, CN//AB)

CM=BM

\(\widehat{CMN}=\widehat{BMA}\)(hai góc đối đỉnh)

Do đó: ΔMCN=ΔMBA

=>MN=MA

=>M là trung điểm của AN

=>AN=2AM

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{4,5}=\dfrac{CD}{6}\)

mà BD+CD=BC=7,5

nên \(\dfrac{BD}{4,5}=\dfrac{CD}{6}=\dfrac{BD+CD}{4,5+6}=\dfrac{7.5}{10.5}=\dfrac{5}{7}\)

=>\(BD=5\cdot\dfrac{4.5}{7}=\dfrac{22.5}{7}=\dfrac{45}{14}\left(cm\right)\)

Vì ΔABC vuông tại A có AM là đường trung tuyến

nên \(BM=CM=\dfrac{BC}{2}=3,75\left(cm\right)\)

Vì \(BD=\dfrac{45}{14}< \dfrac{52.5}{14}=BM\)

nên D nằm giữa B và M

30 tháng 4 2016

cho tam giác ABC vuông tại A,AB=4,5 cm;AC=6cm,trung tuyến AM.Đường thẳng vuông góc với AC tại C cắt tia AM tại Na,Tính BCb,C/m AN=2AMc,Phân giác của góc BAC cắt BC tại D.C/m D nằm giữa B và M

cho tam giác ABC vuông tại A,AB=4,5 cm;AC=6cm,trung tuyến AM.Đường thẳng vuông góc với AC tại C cắt tia AM tại Na,Tính BCb,C/m AN=2AMc,Phân giác của góc BAC cắt BC tại D.C/m D nằm giữa B và M

Ay ra mk mới học lớp 6 thui 

1 tháng 5 2016

Bạn tự vẽ hình nha, mk ko biết cách up hình lên dc

a) Áp dụng đ lí Pitago vào tg vuông ABC ta có:

     \(BC^2=AB^2+AC^2\)

    \(\Rightarrow\) \(BC^2=4,5^2+6^2\)

    \(\Rightarrow BC^2=56,25\)

   \(\Rightarrow BC=7,5\)

Vậy BC = 7,5 (cm)

a: \(AB=\sqrt{15^2-12^2}=9\left(cm\right)\)

b: Xét ΔBAM vuông tại A và ΔBNM vuông tại N có

BM chung

góc ABM=góc NBM

=>ΔBAM=ΔBNM

=>MA=MN

c: Xét ΔBDC có

BE là đừog cao, là phân giác

nên ΔBDC cân tại B

=>BD=BC

BA+AD=BD

BN+NC=BC

mà BD=BC; BA=BN

nên AD=NC

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên Tam giác ABM=tam giác ACM (c.g.c) Vì tam giác ABC cân tại A và AM là tia phân giác của góc BAC nên AM cũng là đường cao của tam giác ABC kẻ từ đỉnh A đến đường thẳng chứa cạnh BC. => AM _|_ BC. b) Ta có: Tam giác ABM = Tam giác ACM (cmt) =>BM=CM(2cạnh tương ứng) =>AM là đường trung tuyến của BC. Ta có: AM là đường trung tuyến của BC (cmt) BQ là đường trung tuyến của AC(gt) BQ cắt AM tại G (gt) => G là giao điểm của 3 đường trung tuyến trong tam giác ABC. =>G là trọng tâm của tam giác ABC. (đpcm) c) Ta có: BM=CM (cmt) => BM=CM=BC/2=18/2=9 (cm) Xét tam giác ABM vuông tại M (do AM_|_BC(cmt)) Áp dụng định lí Pitago ta có: AM^2+BM^2=AB^2 => AM^2=AB^2-BM^2 => AM^2=15^2-9^2 => AM^2=225-81 => AM^2= 144 Do AM>0 nên AM=√144=12cm Mà AG=2/3AM(tính chất 3 đường trung tuyến của tam giác) =>AG=2/3.12=8cm d) (Làm như bạn kia) CHÚC BẠN HỌC TỐT!!!
29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)