K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xet ΔABC vuông tại A và ΔMNP vuông tại M co

AB/MN=AC/MP

=>ΔABC đồng dạng vơi ΔMNP

b: ΔABC đồng dạng vơi ΔMNP

=>goc A=góc M; góc B=góc N; gócC=góc P

23 tháng 3 2016

Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:

\(MQ^2=PQ^2-MP^2\)

\(\Rightarrow MQ=10^2-6^2=100-36=64\)

\(\Rightarrow MQ=8\left(cm\right)\)

Xét ▲ABC và ▲MPQ ta có :

\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)

<A=<M=90

Do đó hai tam giác đồng dạng

23 tháng 3 2016

- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .

29 tháng 6 2017

23 tháng 3 2016

Ta có: <A+<B+<C=180

90+30+<C=180

<c=180-30-90=60

Xét ▲ABC và ▲MNP ta có:

<A=<M=90

<C=<P(=60)

Do đó ▲ABC đồng dạng ▲MNP(g-g)

a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có 

góc N chung

DO đó: ΔMNP∼ΔHNM

Suy ra: NM/NH=NP/NM

hay \(NM^2=NH\cdot NP\)

b: NP=13cm

\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)

a: Xét ΔMBN vuông tại M và ΔKBP vuông tại K có

góc MBN=góc KBP

=>ΔMBN đồng dạg với ΔKBP

b:

MP=căn NP^2-MN^2=4cm
MB=BP=4/2=2cm

NB=căn 2^2+3^2=căn 13(cm)

 ΔMBN đồng dạng với ΔKBP

=>MN/PK=BN/BP

=>3/PK=căn 13/2

=>PK=6/căn 13(cm)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: BC=10cm

AH=4,8cm

c: Xét ΔABH vuông tại H có HM là đườg cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

hay AM/AC=AN/AB

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

AM/AC=AN/AB

Do đó: ΔAMN\(\sim\)ΔACB

10 tháng 3 2022

\(a)\) Xét \(\Delta ABC\) và \(\Delta HBA:\)

\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right).\\ \widehat{ABC}chung.\\ \Rightarrow\Delta ABC\sim\Delta HBA\left(g-g\right).\)

\(b)\) Xét \(\Delta ABC\) vuông tại A:

\(+)BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)\(+)AH.BC=AB.AC\) (Hệ thức lượng).\(\Rightarrow AH.10=6.8.\\ \Rightarrow AH=4,8\left(cm\right).\)\(c)\) Xét \(\Delta ABH\) vuông tại H, đường cao MH:\(AH^2=AM.AB\) (Hệ thức lượng). \(\left(1\right)\)Xét \(\Delta ACH\) vuông tại H, đường cao NH:\(AH^2=AN.AC\) (Hệ thức lượng). \(\left(2\right)\)Từ \(\left(1\right);\left(2\right)\Rightarrow AM.AB=AN.AC.\)Xét \(\Delta ACB\) và \(\Delta AMN:\)\(\Rightarrow\dfrac{AB}{AN}=\dfrac{AC}{AM}.\)\(\widehat{A}chung.\\ \dfrac{AB}{AN}=\dfrac{AC}{AM}\left(cmt\right).\\ \Rightarrow\Delta ACB\sim\Delta AMN\left(c-g-c\right).\)

a: Xét ΔMBN và ΔMCA có

góc MBN=góc MCA

góc BMN=góc CMA

=>ΔMBN đồng dạng với ΔMCA

b: AB/AC=MB/MC=MN/MA