K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2020

a, - Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :

\(AB^2+AC^2=BC^2\)

=> \(BC^2=3^2+4^2=25\)

=> \(BC=5\left(cm\right)\)

- Xét tam giác ABC có trung tuyến AM ứng với cạnh huyền BC .

=> \(AM=\frac{1}{2}BC=\frac{1}{2}5=\frac{5}{2}\left(cm\right)\)

b, - Xét tứ giác AEMF có : \(\left\{{}\begin{matrix}EM//AC\left(\perp AB\right)\\MF//AB\left(\perp AC\right)\end{matrix}\right.\)

=> Tứ giác AEMF là hình bình hành .

Lại có góc BAC = 90o ( tam giác vuông )

=> Tứ giác AEMF là hình chữ nhật .

=> AM = EF ( tính chất HCN )

5 tháng 4 2020

giải hộ mình câu c với câu d đi ạ

6 tháng 4 2020

I,M là trung điểm BF,BC nên IM là đường TB \(\Delta BFC\)

\(\Rightarrow\)IM//AC nên AIMK là hình thang

Lại có \(\Delta ABF\) với I là trung điểm BF nên AI=1/2BF(2)

Có K,M là trung điểm CF,BC nên MK là đường TB \(\Delta BFC\)

\(\Rightarrow MK=\frac{1}{2}BF\left(2\right)\)

Từ (1),(2) có AIMK là hình thang có 2 cạnh bên bằng nhau

-Từ đây ta sẽ có: AIMK là hbh hoặc AIMK là hình thang cân

Ta sẽ dùng chứng minh phản chứng để CM AIMK là hình thang cân. Giả sử AIMK là hbh : ta sẽ có: AI//MK

Mà MK//BF( MK là đ/TB)

Nên AI//BF ( vô lí, vì AI là trung tuyến ứng với BF)

Từ đó AIMK ko là hbh suy ra AIMK là hình thang cân

6 tháng 4 2020

IK=1/2BC, AM=1/2BC nên IK=AM suy ra ĐPCM là ngắn hơn

5 tháng 4 2020

A B C M 3 4 E F H k I

Bài làm

a) Xét tam giác ABC vuông tại A có:

Theo định lí Py-ta-go có:

BC2 = AB2 + AC2

hay BC2 = 32 + 42

=> BC2 = 9 + 16

=> BC2 = 25

=> BC = 5 ( cm )

Vì tam giác ABC vuông tại A

Mà AM trung tuyến

=> AM = BM = MC = BC/2 = 5/2 = 2,5 ( cm )

b) Ta có: MF vuông góc với AC

AB vuông góc với AC

=> MF // AB => MF // AE

Lại có: ME vuông góc với AB

AB vuông góc với AC

=> ME // AC => ME // AF

Xét tứ giác AEMF có:

EM // AF ( cmt )

MF // AE ( cmt )

=> AEMF là hình bình hành

Mà góc EAF = 90o

=> AEMF là hình chữ nhật.

=> EF = AM ( hai đường chéo )

c) Xét tam giác AHB vuông tại H có:

\(\widehat{HAB}+\widehat{B}=90^0\) (1)

Xét tam giác ABC vuông tại A có:

\(\widehat{B}+\widehat{C}=90^0\) (2)

Từ (1) và (2) => \(\widehat{HAB}=\widehat{C}\) (3)

Vì AM = MC ( cmt )

=> Tam giác MAC cân tại M

=> \(\widehat{MAC}=\widehat{C}\) (4)

Từ (3) và (4) => \(\widehat{HAB}=\widehat{MAC}\)

d) ( * Ăn cơm xg mik lm tiếp cho )

5 tháng 4 2020

giải hộ mik câu d đi cậu

10 tháng 3 2020

nhầm, 2.1,5 = 3, diện tích = 3 nhé :v

10 tháng 3 2020

A B C M E F N

a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90

=> BEMF là hình chữ nhật (dh)

b, MF _|_ BA

BC _|_ AB

=> MF // BC 

M là trung điểm của AC (gt)

=> MF là đường trung bình của tam giác ABC (đl)

=> F là trung điểm của AB

F Là trung điểm của MN 

=> BMAN là hình bình hành (dh)

MN _|_ AB

=> BMAN là hình thoi (dh)

c, MF là đtb của tam giác ABC (câu a) 

=> MF = BC/2 ; BC = 4 (Gt)

=> MF = 2

tương tự tính ra BF = 1,5

=> S BEMF = 4.1,5 = 6

18 tháng 11 2015

tick cho mình rồi mình giải cho

29 tháng 4 2018

a) bn lm đc rồi nên mk bỏ qua nhé

b)  Áp dụng định lý Putago vào tam giác vuông ABC ta có

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=21^2+28^2=1225\)

\(\Leftrightarrow\)\(BC=\sqrt{1225}=35\)cm

\(\Delta ABC\)vuông tại  \(A\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(AM=\frac{1}{2}BC=17,5\)cm

\(\Delta HBA~\Delta ABC\) (câu a)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AB}{BC}\)

\(\Rightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{21.28}{35}=16,8\)cm

c)  \(\Delta BAC\)có    \(EM\)\(//\)\(AC\) (cùng vuông góc với AB)

\(\Rightarrow\)\(\frac{AE}{AB}=\frac{CM}{CB}\) (1)

   \(\Delta CAB\) có   \(MF\)\(//\)\(AB\) (cùng vuông góc với AC)

\(\Rightarrow\) \(\frac{AF}{AC}=\frac{BM}{BC}\) (2)

   \(\Delta ABC\)có  \(AM\)là trung tuyến

\(\Rightarrow\)\(MB=MC\)(3)

Từ (1), (2) và (3)  suy ra:

   \(\frac{AE}{AB}=\frac{AF}{AC}\)

\(\Rightarrow\)\(EF\)\(//\)\(BC\)  (định lý Ta-lét đảo)

26 tháng 4 2021

cảm ơn ạ

 

31 tháng 10 2017

câu a với câu b làm rồi

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3,...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.a) Chứng minh tứ giác MEPF là hình thoi.b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàngBài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻđường thẳng...
Đọc tiếp

Bài 1: Cho tứ giác ABCD có BC = AD và BC không song song với AD, gọi M, N,
P, Q, E, F lần lượt là trung điểm của các đoạn thẳng AB, BC, CD, DA, AC, BD.
a) Chứng minh tứ giác MEPF là hình thoi.
b) Chứng minh các đoạn thẳng MP, NQ, EF cùng cắt nhau tại một điểm.
c) Tìm thêm điều kiện của tứ giác ABCD để N, E, F, Q thẳng hàng
Bài 2: Cho tam giác ABC vuông tại A (AB&lt;AC), M là trung điểm BC, từ M kẻ
đường thẳng song song với AC, AB lần lượt cắt AB tạt E, cắt AC tại F
a) Chứng minh EFCB là hình thang
b) Chứng minh AEMF là hình chữ nhật
c) Gọi O là trung điểm AM. Chứng minh: E và F đối xứng qua O.
d) Gọi D là trung điểm MC. Chứng minh: OMDF là hình thoi
Bài 3: Cho tam giác ABC có AB&lt;AC. Gọi M, N, P lần lượt là trung điểm của AB,
AC, BC. Vẽ đường cao AH của tam giác ABC. Tứ giác HMNP là hình gì.
Bài 4: Cho tứ giác ABCD có góc DAB = góc BCD = 120 0 . Tính số đo của hai góc
còn lại để ABCD là hình bình hành.
Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh CFDAEB .
c) Chứng minh CFBEAD .
Bài 6: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua
trung điểm M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

5
2 tháng 3 2020

Bài 1:

A B C D M N P Q E F

a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)

\(\Rightarrow ME\)là đường trung bình tam giác ABC

\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)

Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)

\(\Rightarrow PE\)là đường trung bình của tam giác ADC

\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)

mà \(AD=BC\left(gt\right)\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)

CMTT: \(PE=FP,FM=ME\)

\(\Rightarrow ME=EP=PF=FM\)

Xét tứ giác MEPF có:

\(ME=EP=PF=FM\left(cmt\right)\)

\(\Rightarrow MEPF\)là hình thoi ( dhnb)

 b) Vì \(MEPF\)là hình thoi (cmt)

\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc)  (4)

Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)

\(\Rightarrow MQ\)là đường trung bình của tam giác ADB

\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)

Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)

\(\Rightarrow NP\)là đường trung bình của tam giác BDC

\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)

Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)

Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)

\(\Rightarrow MQPN\)là hình bình hành (dhnb)

\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)

Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm 

c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)

\(\Rightarrow QF\)là đường trung bình của tam giác ADB

\(\Rightarrow QF//AB\left(8\right)\)

CMTT: \(FN//CD\)và \(EN//AB\)

Mà Q,F,E,N thẳng hàng 

\(\Rightarrow AB//CD\)

Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện  \(AB//CD\)


 

2 tháng 3 2020

Tối về mình làm nốt  nhé giờ mình có việc