K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(AC=\sqrt{20^2-16^2}=12\left(cm\right)\)

BD là phân giác

=>AD/AB=CD/BC

=>AD/4=CD/5=(AD+CD)/(4+5)=12/9=4/3

=>AD=16/3cm; CD=20/3cm

b: Xét ΔABD vuông tại A và ΔHCD vuông tại H có

góc ADB=góc HDC

=>ΔABD đồng dạng với ΔHCD

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
a. 

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-16^2}=12$ (cm)

Áp dụng tính chất tia phân giác:

$\frac{AD}{CD}=\frac{AB}{BC}=\frac{16}{20}=\frac{4}{5}$

$\Rightarrow \frac{AD}{AD+CD}=\frac{4}{9}$

$\Rightarrow \frac{AD}{AC}=\frac{4}{9}\Rightarrow AD=\frac{4}{9}AC=\frac{4}{9}.12=\frac{16}{3}$ (cm)

$CD=AC-AD=12-\frac{16}{3}=\frac{20}{3}$ (cm)

b.

Xét tam giác $ABD$ và $HCD$ có:

$\widehat{BAD}=\widehat{CHD}=90^0$

$\widehat{BDA}=\widehat{CDH}$ (đối đỉnh)

$\Rightarrow \triangle ABD\sim \triangle HCD$ (g.g)

c.

Từ kết quả tam giác đồng dạng phần b suy ra:
$\frac{S_{HCD}}{S_{ABD}}=(\frac{CD}{BD})^2(*)$

Trong đó:

$CD=\frac{20}{3}$

$BD=\sqrt{AB^2+AD^2}=\sqrt{16^2+(\frac{16}{3})^2}=\frac{16\sqrt{10}}{3}(**)$

Từ $(*); (**)\Rightarrow \frac{S_{HCD}}{S_{ABD}}=\frac{5}{32}$

$\Rightarrow S_{HCD}=\frac{5}{32}S_{ABD}=\frac{5}{32}.\frac{AD}{AC}S_{ABC}$
$=\frac{5}{32}.\frac{16}{3.12}.\frac{AB.AC}{2}$

$=\frac{5}{32}.\frac{4}{9}.\frac{16.12}{2}=\frac{20}{3}$ (cm2)

1 tháng 5 2018

câu b ntn v ạ

19 tháng 3 2019

A C D E

Xét \(\Delta ABC\) Và \(\Delta DEC\) có :

         \(\widehat{BAC}\)\(=\widehat{E\text{D}C}\) ( cùng = 900 )

            \(\widehat{C}\) là góc chung

  \(\Rightarrow\)\(\Delta ABC\) ~    \(\Delta DEC\) ( g-g )

Áp dụng định lí pi - ta - go vào \(\Delta ABC\)vuông tại A ta được :

  \(BC^2\)=  \(AB^2\)\(+\)\(AC^2\)

  \(BC^2\)=  32  +   52

  \(BC^2\)=  9  +  25

  \(BC^2\)=  34

  \(BC=\sqrt{34}\)

 Xét \(\Delta ABC\) có AD là đường phân giác \(\widehat{BAC}\)

\(\Rightarrow\frac{B\text{D}}{C\text{D}}=\frac{AB}{AC}\)\(\Rightarrow\frac{B\text{D}}{BC-B\text{D}}=\frac{3}{5}\)\(\Rightarrow\frac{B\text{D}}{\sqrt{34}-B\text{D}}=\frac{3}{5}\)

\(\Rightarrow5BD=3\sqrt{34}-3BD\)\(\Rightarrow3\sqrt{34}-3BD-5BD=0\)

\(\Rightarrow3\sqrt{34}-8BD=0\)\(\Rightarrow B\text{D}=\frac{3\sqrt{34}}{8}\)

28 tháng 2 2021

A B C 9 12 D E

a, Xét tam giác ABC và tam giác EDC ta có : 

^C _ chung 

\(\frac{BC}{DC}=\frac{AC}{EC}\)

^BAE = ^CED = 90^0 

=> tam giác ABC ~ tam giác CED ( g.c.g ) 

HAB ? ^H ở đâu bạn ? 

b, Vì AD là tia phân giác tam giác ABC ta có : 

\(\frac{AB}{AC}=\frac{BD}{DC}\Leftrightarrow\frac{9}{12}=\frac{BD}{DC}\)

hay \(\frac{BD}{DC}=\frac{9}{12}\)tự tính BD và CD nhé 

c, Vì AB vuông AC ; DE vuông AC => AB // DE. Áp dụng hệ quả Ta lét : 

\(\frac{CE}{BC}=\frac{DE}{AB}\)thay dữ liệu bên phần b tính 

d, Áp dụng Py ta go với dữ kiện bên trên tìm tí số