K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

BM=AB-AM=12-3=9

ta có 

BA vuông góc AC

BA vuông góc MN

=>AC//MN

áp dụng hệ  quả của te-lét ta đc

BM/BA=MN/AC

=>9/12=15/AC

=>15.12/9=AC

=>AC=180/9=20

Sửa đề: N∈BC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

M∈AB(gt)

N∈BC(gt)

MN//BC(gt)

Do đó: \(\dfrac{NC}{BC}=\dfrac{AM}{AB}\)(Định lí Ta lét)

\(\Leftrightarrow\dfrac{NC}{10}=\dfrac{4}{6}=\dfrac{2}{3}\)

hay \(NC=\dfrac{20}{3}cm\)

Ta có: NC+NB=BC(N nằm giữa B và C)

hay \(NB=BC-NC=10-\dfrac{20}{3}=\dfrac{10}{3}cm\)

Xét ΔABC có

N∈BC(gt)

M∈AB(gt)

MN//AC(gt)

Do đó: \(\dfrac{MN}{AC}=\dfrac{BN}{BC}\)(Hệ quả của Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{8}=\dfrac{10}{3}:10\)

\(\Leftrightarrow MN=\dfrac{10}{3}\cdot\dfrac{1}{10}\cdot8\)

hay \(MN=\dfrac{8}{3}cm\)

Vậy: \(NC=\dfrac{20}{3}cm\)\(MN=\dfrac{8}{3}cm\)

28 tháng 4 2017

Tam giác ABC vuông tại A, theo định lí Pi-ta-go ta có:

B C 2 = A B 2 + A C 2 ⇒ B C 2 = 5 2 + 12 2 = 169 ⇒ B C   =   13

BM = 5 13 BC = 5 13 .13 = 5 => CM = 13 - 5 = 8.

Xét ΔCMN và ΔCBA có:

N = A = 90 ∘  (gt)

Góc C chung

=> ΔCMN ~ ΔCBA (g - g) =>  (cạnh tương ứng)

⇒ M N = A B . C M C B = 5.8 13 = 40 13

Đáp án: C

20 tháng 5 2020

Đề bài của bn bị thiếu à?

Cho tam giác ABC vuông tai A (AB ?

29 tháng 2 2020

:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v

a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Xét tam giác ABC có MN//BC (gt)

\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)

\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)

\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)

b)Vì MI//AC (gt)

\(\Rightarrow MI//AK\left(K\in AB\right)\)

Vì IK//AB(gt)

\(\Rightarrow IK//AM\left(M\in AB\right)\)

Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)

Ta có: AM+MB=AB

\(\Rightarrow MB=1,5\left(cm\right)\)

Xét tam giác ABC có MI//AB(gt)

29 tháng 2 2020

Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))

a) Tính giá trị của B biết x=-2

b) Rút gọn A

c) Cho P=A:B Tìm x biết P=3

Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)

a) Rút gọn A

b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)

c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên

14 tháng 12 2023

a: Xét tứ giác ANMP có

\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)

=>ANMP là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

MN//AC

Do đó: N là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MP//AB
Do đó: P là trung điểm của AC

Xét ΔABC có

N,P lần lượt là trung điểm của AB,AC

=>NP là đường trung bình của ΔABC

=>NP//BC và NP=BC/2

=>NP//MH

Ta có: ΔHAC vuông tại H

mà HP là đường trung tuyến

nên HP=AP

mà AP=MN(ANMP là hình chữ nhật)

nên HP=MN

Xét tứ giác MHNP có MH//NP
nên MHNP là hình thang

Hình thang MHNP có MN=HP

nên MHNP là hình thang cân

12 tháng 3 2023

a) Do MN//BC nên theo hệ quả của ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{MN}{BC}\)

\(\Rightarrow\) \(\dfrac{2}{4}\) = \(\dfrac{MN}{6}\)\(\Rightarrow\) MN = \(\dfrac{2\times6}{4}\)\(\Rightarrow\) MN = 3 cm

b) Do MN//BC nên theo ĐL Ta-let ta có \(\dfrac{AM}{AB}\)=\(\dfrac{AN}{AC}\)

\(\Rightarrow\)\(\dfrac{12}{15}\)=\(\dfrac{AN}{18}\)\(\Rightarrow\) AN = \(\dfrac{12\times18}{15}\) = 14,4 cm

6 tháng 2 2018

Bài 1:

Áp dụng tính chất đường phân giác của tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)

\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)

Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)

\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)

Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)

b)\(\text{Ta có:}\)

\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)

\(\Rightarrow AE=8cm,EC=10cm\)

5 tháng 2 2018

bn ơi bài 1 ý a)  chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu