Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: AD+DC=AC(D nằm giữa A và C)
nên DC=AC-AD=3-1=2(cm)
Ta có: DE=AD(gt)
mà AD=1cm(cmt)
nên DE=1cm
Ta có: \(\dfrac{BD}{CD}=\dfrac{\sqrt{2}}{2}\)
\(\dfrac{DE}{DB}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Do đó: \(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)\(\left(=\dfrac{\sqrt{2}}{2}\right)\)
Xét ΔBDE và ΔCDB có
\(\dfrac{BD}{CD}=\dfrac{DE}{DB}\)(cmt)
\(\widehat{BDE}\) chung
Do đó: ΔBDE\(\sim\)ΔCDB(c-g-c)
a) Ta có: AD+DE+EC=AC
mà AD=DE=EC(gt)
nên \(AD=\dfrac{AC}{3}=\dfrac{3}{3}=1\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=1+1=2\)
hay \(BD=\sqrt{2}cm\)
Vậy: \(BD=\sqrt{2}cm\)
Ta thấy :
AD=DE=EC =\(\frac{1}{3}AC=1\left(cm\right)\)
Xét tam giác ABC vuông tại A :
\(\Rightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{1+1}=\sqrt{2}\)
b)
Xét:\(\frac{BD}{DE}=\frac{\sqrt{2}}{1}=\sqrt{2}\)
\(\frac{DC}{BD}=\frac{2}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\frac{BD}{DE}=\frac{DC}{DB}\)
Xét tam giác BDE và tam giác CDB có
BDC chung
\(\frac{BD}{DE}=\frac{DC}{DB}\)(CMT)
tam giác BDE đồng dạng với tam giác CDB
\(\widehat{DBE}=\widehat{BCD}\)
\(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{DEB}+\widehat{DBE}=\widehat{ADB}\)
mà tam giác ABD vuông tại A có AB=AD=1 (cm)
nên tam giác ABD vuông cân nên ADB=ABD=45 độ
hay \(\Rightarrow\widehat{DEB}+\widehat{DCB}=\widehat{ADB}=45^0\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Ta có: ΔAHB\(\sim\)ΔCAB(cmt)
nên \(\dfrac{AH}{CA}=\dfrac{HB}{AB}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{8}=\dfrac{HB}{6}=\dfrac{6}{10}=\dfrac{3}{5}\)
Suy ra: \(\left\{{}\begin{matrix}\dfrac{AH}{8}=\dfrac{3}{5}\\\dfrac{HB}{6}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=4.8\left(cm\right)\\HB=3.6\left(cm\right)\end{matrix}\right.\)
Vậy: AH=4,8cm; HB=3,6cm
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
a) Dễ thấy : \(\Delta ABC\) đồng dạng với \(\Delta DEC\) (g.g) (Góc A = Góc CDE; góc C chung)
b) Từ a => \(\frac{AB}{DE}=\frac{AC}{DC}=\frac{BC}{EC}\)
c) Từ b => DC.BC = EC.AC
b) Xét ΔIDC vuông tại I và ΔABC vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔIDC\(\sim\)ΔABC(g-g)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{AD}{21}=\dfrac{CD}{35}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{21}=\dfrac{CD}{35}=\dfrac{AD+CD}{21+35}=\dfrac{AC}{56}=\dfrac{28}{56}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{21}=\dfrac{1}{2}\\\dfrac{CD}{35}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=\dfrac{21}{2}cm\\CD=\dfrac{35}{2}cm\end{matrix}\right.\)
Vậy: AD=10,5cm; CD=17,5cm
AD=DE=EC
mà AD+DE+EC=AC=3cm
nên \(AD=DE=EC=\dfrac{3}{3}=1\left(cm\right)\)
Ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=1^2+1^2=2\)
=>\(BD=\sqrt{2}\left(cm\right)\)
Ta có: DC=DE+EC
=>DC=1+1
=>DC=2(cm)
Xét ΔDBE và ΔDCB có
\(\dfrac{DB}{DC}=\dfrac{DE}{DB}\left(\dfrac{\sqrt{2}}{2}=\dfrac{1}{\sqrt{2}}\right)\)
\(\widehat{BDE}\) chung
Do đó: ΔDBE~ΔDCB
=>\(\widehat{DEB}=\widehat{DBC}\)
\(\widehat{AEB}+\widehat{ACB}=\widehat{DBC}+\widehat{ACB}=180^0-\widehat{CDB}\)
Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ADB}=45^0\)
=>\(\widehat{AEB}+\widehat{ACB}=180^0-\widehat{CDB}=\widehat{ADB}=45^0\)