K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2017

 có 3 cách chon cách nào thì chọn

 đặt BC=a ---> AD=a/2. Vì G là giao điểm các đường trung tuyến AD,BE nên DG=AD/3 =a/6 và AG=2GD=a/3 
Áp dụng Pitago cho tg ABG : BG^2= AB^2 -AG^2 = 6 -(a/3)^2 --> BG^2= 6 -(a^2)/9 (*) 
Áp dụng Pitago cho tg BDG: BG^2= BD^2-DG^2 = (a/2)^2 -(a/6)^2 = (2/9).(a^2) (**) 
So sánh (*) và (**) ta có BG^2 = 6 -(a^2)/9 = (2/9).(a^2) --> 6= (a^2)/9 + (2/9). (a^2) ---> a^2 =18 --> a=√18 =3√2

cách 2

Ta có góc BEA = góc DAB = góc DBA 
=> tam giác BAE đồng dạng tam giác CAB 
=> AC/AB = AB/AE 
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC) 

Pytago : 
BC^2 = AC^2 + BC^2 = 24 
=> BC = 3 căn2

Cách 3

Ta có góc BEA = góc DAB = góc DBA 
=> tam giác BAE đồng dạng tam giác CAB 
=> AC/AB = AB/AE 
=> AC .AE = 6 <=> AC^2 = 12 ( AE = 1/2 AC) 

Pytago : 
BC^2 = AC^2 + BC^2 = 24 
=> BC = 3 căn2 
Tung 11A2 · 6 năm trước

Không biết đúng ko

24 tháng 6 2015

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

27 tháng 8 2015

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.a) Chứng minh tứ giác AEHF là hình chữ nhậtb) Chứng minh tứ giác BEFC nội tiếpc) Gọi I là trung điểm của BC.Chứng minh AI vuông góc với EFd) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEFC.Tính diện tích hình tròn tâm K.B2: Cho ABC nhọn, đường tròn (O)...
Đọc tiếp

B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.

a) Chứng minh tứ giác AEHF là hình chữ nhật

b) Chứng minh tứ giác BEFC nội tiếp

c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF

d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.

B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H

a) Chứng minh tứ giác ADHE nội tiếp

b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE

c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF

d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC

B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )

a) Chứng minh tứ giác OBAC nội tiếp

b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD

c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA

d) Tính diện tích tam giác BDC theo R

B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H

a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó

b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC

c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF

d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R

B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.

a) Chứng minh tứ giác AKHF nội tiếp đường tròn.

b) Chứng minh hai cung CI và CJ bằng nhau.

c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau

B6: Cho tam giác ABC nhọn nội tiếp đường tròn  ( O; R ),các đường cao BE, CF  .

a)Chứng minh tứ giác BFEC nội tiếp.

b)Chứng minh OA  vuông góc với EF.

3
27 tháng 5 2018

B1, a, Xét tứ giác AEHF có: góc AFH = 90o  ( góc nội tiếp chắn nửa đường tròn)

                                             góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )

                                             Góc CAB = 90o ( tam giác ABC vuông tại A)

=> tứ giác AEHF là hcn(đpcm)

b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF  = góc AHF ( hia góc nội tiếp cùng chắn cung AF)

mà góc AHF = góc ACB ( cùng phụ với góc FHC)

=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)

c,gọi M là giao điểm của AI và EF

ta có:góc AEF = góc ACB (c.m.t) (1)

do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA

hay tam giác IAB cân tại I => góc MAE = góc ABC (2)

mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong  một tam giác)

=>  ACB + góc ABC = 90o (3)

từ (1) (2) và (3) => góc AEF + góc MAE = 90o

=> góc AME = 90o (theo tổng 3 góc trong một tam giác)

hay AI uông góc với EF (đpcm)

1 tháng 4 2019

em moi lop 6 huhuhuhuhuhu

18 tháng 6 2021

Xét \(\Delta ABK\),ta có: BE là phân giác \(\angle ABK,BE\bot AK\)

\(\Rightarrow\Delta ABK\) cân tại B \(\Rightarrow BE\) là trung trực AK

Xét \(\Delta ABD\) và \(\Delta KBD:\) Ta có: \(\left\{{}\begin{matrix}AB=BK\\BDchung\\\angle ABD=\angle KBD\end{matrix}\right.\)

\(\Rightarrow\Delta ABD\sim\Delta KBD\left(c-g-c\right)\Rightarrow\angle BKD=\angle BAD=90\)

Ta có: \(\angle BAD+\angle BKD=90+90=180\Rightarrow BAKD\) nội tiếp

\(\Rightarrow\angle AKD=\angle ABD=\angle KBD=\angle KAH\left(=90-\angle BKA\right)\)

\(\Rightarrow\)\(AI\parallel KD\)

Vì \(I\in BE\Rightarrow IA=IK\Rightarrow\Delta IAK\) cân tại I \(\Rightarrow\angle IKA=\angle IAK\)

BADK nội tiếp \(\Rightarrow\angle KAD=\angle KBD=\angle ABD=\angle AKD\)

\(\Rightarrow\angle IKA=\angle DAK\Rightarrow\)\(IK\parallel AD\Rightarrow AIKD\) là hình bình hành

mà \(IA=IK\Rightarrow IKDA\) là hình thoiundefined

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7

Gì nhiều vậy???