K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Từ (gt) :AB/3=AC/4 suy ra AB=AC/4*3

AD định lí pythagore vào tam giác ABC ta có:BC^2=AB^2+AC^2=(AC/4*3)^2+AC^2=9/16*AC^2+AC^2

AC^2*(9/16+1)=BC^2=150^2=22500 suy ra AC^2=22500/(9/16+1)=14400 suy ra AC= căn14400 =120

Suy ra AB=120*3/4=90

Vậy AB=90,AC=120

(đơn vị tự thêm)

31 tháng 1 2016

4) ti lê canh huyen la: 52 + 122 = 132

ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52 

5) cac canh bang 20;48 ;52

la tg vuong vi 522 = 482+202.

( giai toan giup bạn )

1 tháng 1 2016

Khó thật , đợi mình nghĩ

1 tháng 1 2016

haizzz , mình thấy trên mạng ns đây là lớp 9 mình ms lớp 7 thôi , xl 

Bài 2: D

Bài 3: B

Bài 4: B

bài 5: C

8 tháng 1 2020

A B C E F O

GT

 △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm

 BF và BC tỉ lệ 3 và 5

 BE ∩ CF = {O} . Nối AO với EF

KL

 a, △ABC cân

 b, BC = ?

 c, AO là trung trực EF

Bài làm:

a, Xét △BFC vuông tại F và △CEB vuông tại E

Có: BC là cạnh chung

      CF = BE (gt)

=> △BFC = △CEB (ch-cgv)

=> FBC = ECB (2 góc tương ứng)

Xét △ABC có: ABC = ACB (cmt)

=> △ABC cân tại A

b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)

Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)

Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)

\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)

\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)

\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)

c, Vì △ABC cân tại A => AB = AC

Ta có: AB = AF + FB

          BC = AE + EC

Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)

=> AF = AE

=> A thuộc đường trung trực của FE   (1)

Ta có: DBC = FBE + EBC 

          ECB = ECF + FCB

Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)

=> FBE = ECF

Xét △BFO vuông tại F và △CEO vuông tại E

Có: FBO = ECO (cmt) 

     BF = CE (△BFC = △CEB)

=> △BFO = △CEO (cgv-gnk)

=> FO = OE (2 cạnh tương ứng)

=> O thuộc đường trung trực của FE   (2)

Từ (1) và (2) => đường thẳng AO là trung trực của EF.

8 tháng 1 2020

thank bạn

10 tháng 7 2018

Áp dụng định lý pytago vào tam giác ABC ta có: \(AB^2+AC^2=BC^2=102^2=10404\)

Theo bài ra ta có: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{10404}{289}=36\)

\(\Rightarrow\frac{AB^2}{64}=36\Rightarrow AB^2=2304\Rightarrow AB=48\left(cm\right)\left(AB>0\right)\) 

\(\frac{AC^2}{225}=36\Rightarrow AC^2=8100\Rightarrow AC=90\left(cm\right)\left(AC>0\right)\)

Vậy AB = 48cm, AC = 90cm

28 tháng 1 2016

hình đâu

28 tháng 1 2016

hinh