K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2020

Vì BE = AB (gt) => △ABE cân tại B => AB = BE và BAE = BEA

Vì EK ⊥ AC (gt) mà AB ⊥ AC 

=> EK // AB (từ vuông góc đến song song)

=> KEA = BAE 

Mà BAE = BEA (cmt)

=> KEA = BEA

Xét △HAE vuông tại H và △KAE vuông tại K

Có: AE là cạnh chung

      HEA = KEA (cmt)

=> △HAE = △KAE (ch-gn)

=> AH = AK (2 cạnh tương ứng)

Xét △EKC vuông tại K có: KC < EC (quan hệ cạnh)

Ta có: AC = AK + KC = AH + KC < AH + EC

Xét △HBA vuông tại H có: AH < AB (quan hệ cạnh)

Ta có: AH + BC = AH + EC + BE > AC + BE = AC + AB 

a: ΔAHB vuông tại H

=>AH<AB

b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có

AD=BA

góc KAD=góc HBA

=>ΔKAD=ΔHBA

=>KD=HB và AK=BH

9 tháng 2 2019

a, Xét tam giác ABE và tam giác HBE có

                AB=HB(gt)

               \(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)

                BE chung

\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ

\(\Rightarrow\)EH vuông góc vs BC

31 tháng 1 2020

a) Vì BE là tia phân giác của tam giác ABC

=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)

* Xét tam giác ABE và tam giác HBE có :

 + )BA = BH ( gt)

+) \(\widehat{ABE}=\widehat{EBH}\)  (cmt)

+)BE chung

=> tam giác ABE = tam giác HBE ( c-g-c)

-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )

Mà \(\widehat{BAE}=90^0\)\(\widehat{BAC}=90^0\))

-> \(\widehat{BHE}=90^0\)

=> BH vuông góc EH hay BC vuông góc EH ( đpcm)

b) Vì tam giác ABE = tam giác HBE (cmt)

=> AE = EH ( 2 cạnh tương ứng )

* Có : AE = EH ( cmt)

=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)

BA = BH ( gt )

=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )

Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )

c) Vì tam giác ABC có \(\widehat{A}\)\(90^0\) ( gt)

=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )

=>\(\widehat{EAK}=90^0\)

Vì EH vuông góc AC ( cmt)

=> \(\widehat{EHC}=90^0\)

Xét tam giác AEK và tam giác HEC có 

AE = EH (cmt)

\(\widehat{EAK}=\widehat{EHC}=90^0\)

\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)

=> tam giác AEK = tam giác HEC ( g-c-g)

=> EK = EC ( 2 cạnh tương ứng)

d) Có : BA = BH ( gt 0

=> tam giác BAH cân tại B

=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)

Vì tam giác AEK = tam giác HEC ( cmt )

=> AK = HC ( 2 cạnh tương ứng)

Có: AK = BA + AK

      BC = BH + HC

Mà BA = BH ( gt )

AK = HC ( cmt)

=> BK = BC

=> Tam giác BKC cân tại B

=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )

Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)

Mà 2 góc ở vị trí đồng vị

=> AH // BC ( đpcm)

e) Có :  Tam giác BKC cân tại B

M là trung điểm BC 

=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC

Có BK là đường phân giác của tam giác BKC (cmt)

=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)

Mà BE cũng là đường phân giác của \(\widehat{BAH}\)

=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)

4 tháng 5 2022

db

 

 

24 tháng 2 2022

@Lê Phước Thịnh cứu em

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cma) Chứng tỏ tam giác ABC vuông tại A.b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC =...
Đọc tiếp

1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm

a) Chứng tỏ tam giác ABC vuông tại A.

b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.

2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.

3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.

4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC

a) Chứng minh tam giác AHB = tam giác AHC

b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.

5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I

a) Chứng minh tam giác AIB = tam giác AIC

b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.

c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.

6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.

a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.

b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.

c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.

Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(

5
7 tháng 4 2020

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

8 tháng 4 2020

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

a: Xét ΔMAB và ΔMEC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔMAB=ΔMEC

b: ΔMAB=ΔMEC

=>góc MAB=góc MEC

=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có

MA=ME

góc HAM=góc KEA
=>ΔMHA=ΔMKE

=>MH=MK

=>M là trung điểm của HK