Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H
=>AH<AB
b: Xét ΔKAD vuông tại K và ΔHBA vuông tại H có
AD=BA
góc KAD=góc HBA
=>ΔKAD=ΔHBA
=>KD=HB và AK=BH
a, Xét tam giác ABE và tam giác HBE có
AB=HB(gt)
\(\widehat{ABE}\)=\(\widehat{HBE}\)(gt)
BE chung
\(\Rightarrow\)\(\Delta\)ABE=\(\Delta\)HBE(c.g.c)\(\Rightarrow\)\(\widehat{EAB}\)=\(\widehat{EHB}\)mà \(\widehat{EAB}\)=90 độ\(\Rightarrow\)\(\widehat{EHB}\)=90 độ
\(\Rightarrow\)EH vuông góc vs BC
a) Vì BE là tia phân giác của tam giác ABC
=> \(\widehat{ABE}=\widehat{EBC}\)hay \(\widehat{ABE}=\widehat{EBH}\)
* Xét tam giác ABE và tam giác HBE có :
+ )BA = BH ( gt)
+) \(\widehat{ABE}=\widehat{EBH}\) (cmt)
+)BE chung
=> tam giác ABE = tam giác HBE ( c-g-c)
-> \(\widehat{BAE}=\widehat{BHE}\)( hai cạnh tương ứng )
Mà \(\widehat{BAE}=90^0\)( \(\widehat{BAC}=90^0\))
-> \(\widehat{BHE}=90^0\)
=> BH vuông góc EH hay BC vuông góc EH ( đpcm)
b) Vì tam giác ABE = tam giác HBE (cmt)
=> AE = EH ( 2 cạnh tương ứng )
* Có : AE = EH ( cmt)
=> Khoảng cách từ điểm E đến H bằng khoảng cách từ điểm E đến A ( 1)
BA = BH ( gt )
=. Khoản cách từ điểm B đến điềm H bằng khoảng cách từ điểm B đến điểm A ( 2 )
Từ ( 1 ) và ( 2 ) => BE là đường trung trực của AH ( đpcm )
c) Vì tam giác ABC có \(\widehat{A}\)= \(90^0\) ( gt)
=> AB vuông góc AC hay AE vuông góc AK ( E e AC ; K e AB )
=>\(\widehat{EAK}=90^0\)
Vì EH vuông góc AC ( cmt)
=> \(\widehat{EHC}=90^0\)
Xét tam giác AEK và tam giác HEC có
AE = EH (cmt)
\(\widehat{EAK}=\widehat{EHC}=90^0\)
\(\widehat{AEK}=\widehat{HEC}\)(đối đỉnh)
=> tam giác AEK = tam giác HEC ( g-c-g)
=> EK = EC ( 2 cạnh tương ứng)
d) Có : BA = BH ( gt 0
=> tam giác BAH cân tại B
=. \(\widehat{BAH}=\frac{180^0-\widehat{ABH}}{2}\)( 3)
Vì tam giác AEK = tam giác HEC ( cmt )
=> AK = HC ( 2 cạnh tương ứng)
Có: AK = BA + AK
BC = BH + HC
Mà BA = BH ( gt )
AK = HC ( cmt)
=> BK = BC
=> Tam giác BKC cân tại B
=>\(\widehat{BKC}=\frac{180^0-\widehat{KBC}}{2}\)hay \(\widehat{BKC}=\frac{180^0-\widehat{ABH}}{^{ }2}\)( 4 )
Từ ( 3 ) và ( 4 ) => \(\widehat{BAH}=\widehat{BKC}\)
Mà 2 góc ở vị trí đồng vị
=> AH // BC ( đpcm)
e) Có : Tam giác BKC cân tại B
M là trung điểm BC
=> BM là đường trung tuyến đồng thời là đường phân giác của tam giác BKC
Có BK là đường phân giác của tam giác BKC (cmt)
=> BK là đường phân giác của\(\widehat{KBC}\)hay \(\widehat{BAH}\)
Mà BE cũng là đường phân giác của \(\widehat{BAH}\)
=> BE trùng BK hay ba điểm B ; E ; K thẳng hàng ( đpcm)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a: Xét ΔMAB và ΔMEC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔMAB=ΔMEC
b: ΔMAB=ΔMEC
=>góc MAB=góc MEC
=>AB//CE
c: Xét ΔMHA vuông tại H và ΔMKE vuông tại K có
MA=ME
góc HAM=góc KEA
=>ΔMHA=ΔMKE
=>MH=MK
=>M là trung điểm của HK
Vì BE = AB (gt) => △ABE cân tại B => AB = BE và BAE = BEA
Vì EK ⊥ AC (gt) mà AB ⊥ AC
=> EK // AB (từ vuông góc đến song song)
=> KEA = BAE
Mà BAE = BEA (cmt)
=> KEA = BEA
Xét △HAE vuông tại H và △KAE vuông tại K
Có: AE là cạnh chung
HEA = KEA (cmt)
=> △HAE = △KAE (ch-gn)
=> AH = AK (2 cạnh tương ứng)
Xét △EKC vuông tại K có: KC < EC (quan hệ cạnh)
Ta có: AC = AK + KC = AH + KC < AH + EC
Xét △HBA vuông tại H có: AH < AB (quan hệ cạnh)
Ta có: AH + BC = AH + EC + BE > AC + BE = AC + AB