K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2021

a, Xét ▲ABC  và ▲MDC có:

∠CAB=∠DMC (=90o)

∠DCB chung

=> ▲ABC∼▲MDC (g.g)

b, Xét ▲MBI và ▲ABC có:

∠CAB=∠IMB (=90o)

∠ABC chung

=> ▲MBI∼▲ABC (g.g)

=> \(\dfrac{BI}{BC}=\dfrac{BM}{BA}\) => BI.BA=BM.BC

c, Xét ▲ADB và ▲KIB có:

∠DAB=∠CKB (=90o)

∠DBA chung

=> ▲ADB∼▲KIB (g.g)

=>\(\dfrac{BA}{KB}=\dfrac{DB}{BI}\) => BA.BI=KB.DB

Xét ▲DKC và ▲IAC có:

∠DKC=∠IAC (=90o)

∠DCK chung

=> ▲DKC∼▲IAC (g.g)

=>\(\dfrac{CK}{AC}=\dfrac{DC}{CI}\) => CK.CI=DC.AC

Ta có: BA.BI=KB.DB nên BA.BI ko thay đổi khi M thay đổi

CK.CI=DC.AC nên CK.CI ko thay đổi khi M thay đổi

nên BI.BA+CI.CK ko phụ thuộc vào vị trí của điểm M

 

 

6 tháng 7 2021

d, Xét ▲BMA và ▲BIC có:

\(\dfrac{BA}{BM}=\dfrac{BC}{BI}\) (cmc, b)

∠ACB chung

=> ▲BMA ∼▲BIC (c.g.c)

=> ∠BAM=∠BCI 

Xét ▲CAI và ▲BKI có:

∠CAI=∠BKI (=90o)

∠AIC=∠KIB (đ.đ)

=> ▲CAI ∼▲BKI (g.g)

=> \(\dfrac{IA}{IC}=\dfrac{IK}{IB}\)

Xét ▲IAK và ▲ICB có:

\(\dfrac{IA}{IC}=\dfrac{IK}{IB}\) (cmt)

∠AIK=∠CIB (đ.đ)

=> ▲IAK ∼▲ICB (g.g)

=> ∠KAB=∠BCI

mà ∠BAM=∠BCI 

nên ∠KAB=∠BAM hay AB là tia p/g của ∠MAK (đpcm)

 

 

17 tháng 3 2019

Các bạn ơi giúp mình với !!!

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
5 tháng 1 2016

lam dc bai nay chua ban

 

26 tháng 8 2020

bạn ơi, làm câu c rồi thì giải đi