K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔEHC

2: Xét tứ giác AHEB có \(\widehat{HAB}+\widehat{HEB}=180^0\)

nên AHEB là tứ giác nội tiếp

hay \(\widehat{HBC}=\widehat{EAC}\)

2: Xét tứ giác AHEB có 

\(\widehat{HAB}\) và \(\widehat{HEB}\) là hai góc đối

\(\widehat{HAB}+\widehat{HEB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AHEB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Suy ra: \(\widehat{HAE}=\widehat{HBE}\)(hai góc cùng nhìn cạnh HE)

hay \(\widehat{HBC}=\widehat{EAC}\)(đpcm)

1: Xét ΔABC vuông tại A và ΔEHC vuông tại E có 

\(\widehat{HCE}\) chung

Do đó: ΔABC\(\sim\)ΔEHC(g-g)

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

Ta có: \(\hat{BAD}+\hat{CAD}=\hat{BAC}=90^0\)

\(\hat{BDA}+\hat{HAD}=90^0\) (ΔHAD vuông tại H)

\(\hat{BAD}=\hat{BDA}\) (ΔBAD cân tại B)

nên \(\hat{CAD}=\hat{HAD}\)

=>AD là phân giác của góc HAC

b: Xét ΔAHD và ΔAED có

AH=AE

\(\hat{HAD}=\hat{EAD}\)

AD chung

Do đó: ΔAHD=ΔAED

=>\(\hat{AHD}=\hat{AED}\)

=>\(\hat{AED}=90^0\)

=>ED⊥AC
mà HK⊥AC
nên HK//ED

=>HKED là hình thang

c: ΔAHD=ΔAED

=>DH=DE

=>D nằm trên đường trung trực của HE(1)

Ta có: AH=AE

=>A nằm trên đường trung trực của HE(2)

Từ (1),(2) suy ra AD là đường trung trực của HE

=>AD⊥HE

Xét ΔAEH có

HK,AD là các đường cao

HK cắt AD tại I

Do đó: I là trực tâm của ΔAEH

=>EI⊥AH tại F

mà HC⊥HA

nên EF//HC

=>EFHC là hình thang

Hình thang EFHC có EF⊥FH

nên EFHC là hình thang vuông

27 tháng 12 2021

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.

23 tháng 4 2018

Sai đề bài rồi bn.

7 tháng 3 2021

khó vãi

7 tháng 3 2021

A C H D E M N B O K

11 tháng 1 2017

Bạn tự vẽ hình nhé!

À mà mình chỉ giải cho bạn câu 1 và 2 thôi câu 3 mình đang suy nghĩ hình rối quá

1) Gọi AD và BE lần lượt là hai đường cao của \(\Delta\) ABC .

Theo đề hai đường cao AD và BE cắt nhau tại H hay H là trực tâm của \(\Delta\) ABC

=> CH là đường cao thứ 3 của \(\Delta\) ABC

=> CH \(\perp\) AB (1)

mà BD \(\perp\) AB (gt) => CH//BD

Có BH \(\perp\) AC (BE là đường cao)

CD \(\perp\) AC

=> BH//CD (2)

Từ (1) và (2) suy ra : Tứ giác BHCD là hình bình hành

2) Có BHCD là hình bình hành nên 2 đường chéo cắt nhau tại trung điểm mỗi đường mà M là trung điểm của BC => M cũng là trung điểm của HD hay HM = DM

Có O là trung điểm của AD hay OA = OD

Xét \(\Delta\) AHD có:

HM = DM

OA = OD

=> OM là đường trung bình của \(\Delta\) AHD

=> OM = \(\frac{1}{2}\) AH hay AH = 2 OM

XONG !!ok

15 tháng 5 2016

a, xét tam giác ABC và tam giác DAB có:

góc BAC = góc ADB=90 độ

góc ABC = góc BAD( so le trong của Ax//BC)

do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)

b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:

\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)

theo cm câu a : tam giác ABC đồng dạng với tam giác DAB

=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)

\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)

\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)

c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)

 

17 tháng 5 2016

sao admin ko duyệt ạ