K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).

a) Chứng minh: HB < AH < HC.

b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.

   Chứng minh: CI là tia phân giác của góc ACB.

c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).

   Chứng minh: ID + IC > KE+ DC.

Câu hỏi tương tự Đọc thêmToán lớp 7Hình học               
1 tháng 5 2016

ggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

1 tháng 5 2016

đề có sai ko vậy?

1 tháng 5 2016

Bài 1 x=-1/2

Mình chỉ làm dc đến đấy thôi chứ mình nhìn cái đề đã hết muốn làm rồi

3 tháng 1 2017

ai làm giúp e với ạ

4 tháng 5 2022

db

 

 

a: góc B+góc C=90 độ

góc HAC+góc C=90 độ

=>góc B=góc HAC

=>góc C=góc BAH

b: góc CAD+góc BAD=90 độ

góc CDA+góc HAD=90 độ

mà góc BAD=góc HAD

nên góc CAD=góc CDA

c: ΔCAD cân tại C có CK là phân giác

nên CK vuông góc AD

15 tháng 11 2017

A B C H D K 1 2 1 2 3

a) \(\widehat{BAH}=\widehat{C}\) (vì cùng phụ với \(\widehat{B}\))          (1)

   \(\widehat{CAH}=\widehat{B}\) (vì cùng phụ với \(\widehat{C}\))         (2)

Xét tam giác DAB có: \(\widehat{ADC}=\widehat{DAB}+\widehat{B}\)    (vì góc ngoài bằng tổng hai góc trong không kề với nó)

Ta lại có: \(\widehat{DAC}=\widehat{DAH}+\widehat{HAC}\)

Mà \(\widehat{DAB}=\widehat{DAH}\) (tính chất tia phân giác)

      \(\widehat{B}=\widehat{HAC}\) (theo (2))

=> \(\widehat{ADC}=\widehat{DAC}\)

b) Theo câu a ta có: \(\widehat{C}=\widehat{HAB}\)

=> \(\widehat{C_1}=\widehat{C_2}=\widehat{A_1}=\widehat{A_2}\)

Xét tam giác ACK có tổng 2 góc A và C là:

\(\widehat{ACK}+\widehat{CAK}=\widehat{C_2}+\widehat{CAK}=\widehat{A_1}+\widehat{CAK}=\widehat{CAB}=90^o\)

=> Góc còn lại bằng 90 độ, tức là \(\widehat{AKC}=180^o-\left(\widehat{ACK}+\widehat{CAK}\right)=180^o-90^o=90^o\)

=> CK vuông góc với AD

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0