Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk thấy đề sai hay sao ý ko có đường thẳng nào đi qua B song song vs CD và cắt DM cả
mik thấy cô ghi đè s mik ghi lại y chang chứ mik ko bik j cả. mik đọc cx thấy sai sai cái j á mà ko bik mik đọc đè đúng hay là sai nên mik mới đăng
a: Xét ΔCAB vuông tại A và ΔCAD vuông tại A có
CA chung
AB=AD
=>ΔCAB=ΔCAD
b: Xét ΔMDK và ΔMCB có
góc DMK=góc CMB
MD=MC
góc MDK=góc MCB
=>ΔMDK=ΔMCB
=>DK=CB
BC+BD=BD+DK>BK
a. Áp dụng định lý Pitago cho tam giác vuông ABC ta có: \(AC^2=BC^2-AC^2=10^2-6^2=64\)
Vậy \(AC=8cm\)
b. Do D nằm trên tia đối của tia AB nên \(\widehat{CAD}=90^O\)
Xét tam giác ABC và tam giác ADC có:
\(\widehat{CAB} = \widehat{CAD}=90^O\)
AC chung
AB=AD(giả thiết)
\(\Rightarrow\Delta ABC=\Delta ADC\)(Hai cạnh góc vuông)
c. Xét tam giác DCB có :
A là trung điểm BD,
AE song song BC
\(\Rightarrow\) AE là đường trung bình tam giác DBC., hay E là trung điểm DC. Vậy AE là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên EA=EC=ED. Vậy tma giác AEC cân tại E. ( Còn có thể có cách khác :) )
d. Xét tam giác DBC có CA là trung tuyến, lại có CA = 3OA nên O là trọng tâm tam giác DBC. Do F là trung điểm BC nên DF là đường trung tuyến. Vậy O nằm trên DF hay O, D, F thẳng hàng.
Chúc em học tốt ^^
a)
Theo định lí py ta go trong tam giác vuông ABC có :
BC2 = AB2 + AC2
Suy ra : AC2 = BC2 - AB2
AC2 =102 - 62
AC = căn bậc 2 của 36 = 6 (cm )
b)
Xét tam giác ABC và tam giác ADC có :
AC cạnh chung
Góc A1 = góc A2 = 90 độ (gt )
AB = AD ( gt )
suy ra : tam giác ABC = tam giác ADC ( c- g -c )
a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó: ΔABC=ΔADC
a) Áp dụng định lý Py-ta-go cho \(\Delta\)vuông ABC có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13\left(cm\right)\)
b) Xét \(\Delta ABC\)và \(\Delta ADC\)có:
\(\hept{\begin{cases}AB=AD\left(gt\right)\\gócBAC=gócDAC\left(=90^0\right)\\AC:chung\end{cases}}\)
\(\Rightarrow\Delta ABC=\Delta ADC\left(c.g.c\right)-\left(đpcm\right)\)
c) Xét \(\Delta BDC\)có: \(\hept{\begin{cases}\text{A là trung điểm BD}\\AE//BC\left(gt\right)\end{cases}}\)
\(\Rightarrow\text{E là trung điểm CD}\left(t/c\right)\)
Xét \(\Delta ADC\)vuông tại A có AE là đường trung tuyến ứng cạnh DC
\(\Rightarrow AE=\frac{1}{2}CD\left(t/c\right)=EC\left(\text{E là trung điểm CD}\right)\)
\(\Rightarrow\Delta AEC\)cân tại E (đpcm)
d) Gọi giao của AC và BE là O
Xét \(\Delta DBC\)có:\(\hept{\begin{cases}\text{BE là đường trung tuyến ứng cạnh CD }\left(gt\right)\\\text{CA là đường trung tuyến ứng cạnh BD }\left(gt\right)\end{cases}}\)
\(\Rightarrow\)O là trọng tâm của \(\Delta DBC\)
Mà DF là đường trung tuyến ứng cạnh BC
\(\Rightarrow\)CA, DF, BE cùng đồng quy tại 1 điểm (đpcm)
a: AB<AC
=>góc C<góc B
b: Xét ΔCBD co
CA vừa là đừog cao, vừa là trung tuyến
=>ΔCBD cân tại C
c: Xét ΔMCB và ΔMDE có
góc MCB=góc MDE
MC=MD
góc CMB=góc DME
=>ΔMCB=ΔMDE
=>BC=DE
a, áp dụng định lí py-ta-go ta có:
BC2 =AB2+AC2
=> AC2=BC2−AB2
=> AC2=100−36
=> AC2=64 => AC=8 cm
vậy AC=8 cm
vì BC>AC>AB(10cm>8cm>6cm)
=>\(\widehat{A}\) > \(\widehat{B}\)>\(\widehat{C}\) (góc đối diện vs cạnh lớn hơn là góc lớn hơn) đpcm
b, Xét 2 t.giác vuông BCA và DCA có:
AB=AD(gt)
AC cạnh chung
=> ΔBCA=ΔDCA(cạnh huyền -cạnh góc vuông)
=> BC=DC(2 cạnh tương ứng)
=>\(\Delta\)BCD cân tại C (đpcm)
`a)` Áp dụng định lý pytago ta có :
`AB^2+AC^2=BC^2`
hay `9^2+12^2=BC^2`
`=>BC^2=225`
`=>BC=15(cm)`
`b)` Xét `ΔABC` và `ΔADC` ta có :
`AC` chung
`\hat{BAC}=90^o`
`\hat{DAC}=90^o`
`=>ΔABC=ΔADC` (c.g.c)