K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

lỗi

CK là phân giác ΔABC =>KB/KA=BC/AC

CK là phân giác ΔAHC =>MH/MA=HC/AC

(2) trừ (1)
KB/KA−MH/MA=(BC−HC)/AC=HB/AC => dpcm
30 tháng 4 2017

CK là phân giác \(\Delta_{ABC}\) =>\(\dfrac{KB}{KA}=\dfrac{BC}{AC}\) (1)

CK là phân giác \(\Delta_{AHC}\) =>\(\dfrac{MH}{MA}=\dfrac{HC}{AC}\) (2)

(2) trừ (1)
\(\dfrac{KA}{KB}-\dfrac{MH}{MA}=\dfrac{BC-HC}{AC}=\dfrac{HB}{AC}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

AH=9*12/15=7,2cm

b: ΔHAB vuông tại H có HM vuông góc AB

nên MH^2=MA*MB

 

4 tháng 5 2018

a,Xét 2▲ HBA và ▲ABC

\(_{\widehat{HBA}}\)=\(\stackrel\frown{BAC}\)(=90*)

\(_{\widehat{BHA}}\)=\(\widehat{ACB}\)(cùng phụ vs góc ABC)

===> ▲HBA đồng dạng vs ▲ABC(g.g)

b, Áp dụng đinh lý pytago vs ▲ABC;

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt{12^2}+16^2\)=20(cm)

Ta có Sabc = 1/2 x AB x AC

= 1/2 x BC x AH

=> AB x AC=AH x BC=>AH=\(\dfrac{12x16}{20}\)=9,6(cm)

Áp dụng định lý pytago vs ▲ HAC:

HC=\(\sqrt{Ac^2-}AH^2\)=12,8(cm)

chứng minh tương tự vs ▲ HBA ta dc BH=7,2(cm)

4 tháng 5 2018

A B C H

Xét ΔBMN và ΔCMA có

góc BMN=góc AMC

góc MNB=góc MAC

=>ΔBMN đồng dạng với ΔCMA

29 tháng 4 2017

tự làm nhé

bài đó dễ quá nên mik ko biết làm

29 tháng 4 2017

bạn nói dễ mà sao ko biết làm minh chuong

a: Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC

b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)

\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

=>AC=20(cm)

 

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vói ΔABC

b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)

AH=3*4/5=2,4cm

HB=4^2/5=3,2cm

c: FH/FA=BH/BA

EA/EC=BA/BC

BH/BA=BA/BC

=>FH/FA=EA/EC