Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADI vuông tại D và ΔAEI vuông tại E có
AI chung
góc DAI=góc EAI
=>ΔADI=ΔAEI
=>AD=AE
b: BC=căn 8^2+15^2=17cm
P=(8+15+17)/2=20(cm)
S ABC=1/2*8*15=60cm2
=>AI=S/P=3cm
Xét tứ giác ADIE có
góc ADI=góc AEI=góc DAE=90 độ
AI là phân giác của góc DAE
=>ADIE là hình vuông
=>AD^2+AE^2=AI^2
=>2*AD^2=9
=>AD=3/căn 2
=>AE=3/căn 2
a) Vì I là giao điểm của tia phân giác B và C nên AI là tia phân giác ( tia phân giác thứ 3)
Xét tam giác ADI và tam giác AEI ta có :
AI chung ; góc IDA= góc AEI (=90 độ) ; góc DAI=góc AEI (AI phân giác)
=> Tam giác...=tam giác... (cạnh huyền-góc nhọn)
=> AD=AE (2 cạnh tương ứng)
b) Kẻ IF vuông góc BC
Xét tam giác BDI và tam giác BFI ta có
góc BDI=BFI(=90 độ) ; BI chung ; góc DBI= góc IBF (BI phân giác);
=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)
=> BD=BF( 2 cạnh tương ứng )
Xét tam giác CFI và tam giác CEI ta có
góc CFI=CEI(=90 độ) ; CI chung ; góc FCI= góc ECI (BI phân giác);
=> tam giác ....= tam giác .. (cạnh huyền-góc nhọn)
=> CE=CF( 2 cạnh tương ứng )
Ta có : BF+FC=BC
hay BD+EC=BC
Vậy BD+EC=BC
c) Xét tam giác ABC vuông tại A ta có
AB2+AC2=BC2
hay 62+82= BC2
=> BC2=100
=>BC=10 (cm)
Ta có BC= BD+CE (câu b)
= 6-AD+8-AE
=14-2AD
Hay 14-2AD=BC
14-2AD=10
2AD=14-10=4
=> AD=AE=2 (cm)
(Hình tự vẽ nha)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAHC
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H có
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>góc KAI=góc HAI
=>AI là phân giác của góc BAC
c; AK=8cm nên AH=8cm
AI=căn 8^2+6^2=10cm
Tam giác vuông BAC có ∠A = 90o
Áp dụng định lí Pitago, ta có:
BC2 = AB2 + AC2
= 62 + 82 = 36 + 64 = 100
⇒ BC = 10 (cm)
Kẻ IF ⊥ BC
Xét hai tam giác vuông IDB và IFB, ta có:
∠(IDB) = ∠(IFB) = 90o
∠(DBI) = ∠(FBI) (gt)
cạnh huyền BI chung
Suy ra: ΔIDB = ΔIFB (cạnh huyền, góc nhọn)
Suy ra: DB = FB (hai cạnh tương ứng) (4)
Xét hai tam giác vuông IEC và IFC, ta có:
∠(IEC) = ∠(IFC) = 90o
∠(ECI) = ∠(FCI) (gt)
cạnh huyền CI chung
Suy ra: ΔIEC = ΔIFC (cạnh huyền, góc nhọn)
Suy ra: CE = CF (hai cạnh tương ứng) (5)
Mà: AD + AE = AB - DB + AC - CE
Suy ra: AD + AE = AB + AC - (DB + CE) (6)
Từ (4), (5) và (6) suy ra: AD + AE = AB + AC - (FB + FC)
= AB + AC - BC = 6 + 8 - 10 = 4 (cm)
Mà AD = AE (chứng minh trên)
Nên AD = AE = 4 : 2 = 2(cm).
a) Xét tam giác vuông ABC, áp dụng định lí Pi-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)
b) Ta có do tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^o\)
Lại có \(\widehat{IBC}=\frac{\widehat{ABC}}{2};\widehat{ICB}=\frac{\widehat{ACB}}{2}\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)
Xét tam giác BIC có \(\widehat{IBC}+\widehat{ICB}=45^o\) nên \(\widehat{BIC}=180^o-45^o=135^o\)
c) Kẻ DH vuông góc BC tại H.
Ta có ngay \(\Delta BAD=\Delta BHD\) (Cạnh huyền - góc nhọn)
\(\Rightarrow AD=HD\)
Lại có : theo quan hệ giữa đường vuông góc với đường xiên thì HD < DC
Suy ra AD < DC
d) Gọi K là chân đường vuông góc hạ từ I xuống BC.
Ta có I là giao điểm của ba đường phân giác nên IE = IF = IK
Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=24\left(cm^2\right)\)
Lại có \(S_{ABC}=S_{ABI}+S_{BCI}+S_{CIA}=\frac{1}{2}AB.EI+\frac{1}{2}AC.IF+\frac{1}{2}BC.IK\)
\(=\frac{1}{2}\left(AB+BC+CA\right).EI=12.EI\)
Vậy nên \(12.EI=24\Rightarrow EI=2\left(cm\right)\)
Ta thấy AEIF là hình vuông nên AE = AF = 2cm.