K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

Vì M,P là trung điểm AB,BC nên MP là đtb tg ABC

\(\Rightarrow MP=\dfrac{1}{2}AC=3\left(cm\right)\)

b, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC

\(\Rightarrow MN//BC.hay.MN//CP\)

Do đó MNCP là hình thang

a: BC=10cm

DE=5cm

b: Xét ΔABC có

D là trung điểm của AB

F là trung điểm của BC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AC và DF=AC/2

hay DF=CE và DF//CE

Xét tứ giác DFCE có 

DF//CE

DF=CE
Do đó: DFCE là hình bình hành

c: Xét tứ giác ADFE có 

FD//AE
FD=AE
Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

Suy ra: FA=DE

11 tháng 2 2019

A B C M P

a) Diện tích của tam giác ABC là:

\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)

b) Ta có: N là trung điểm của AB

              M là trung điểm của BC

=> MN là đường trung bình của tam giác ABC

\(\Rightarrow MN//AC\)

Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)

Suy ra: \(MN\perp AB\)

c) Trong tứ giác AMBP:

Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)

=> Tứ giác AMBP là hình bình hành

Mà \(MN\perp AB\)  (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)

=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(HN^2=NA\cdot NC\)

20 tháng 12 2021

a: AD=5cm

29 tháng 10 2021

a: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=6\left(cm\right)\)

10 tháng 12 2021

HELPPPPP

10 tháng 12 2021

a: MN=AC/2=10cm

AN=BC/2=12,5cm

10 tháng 12 2021

a: MN=AC/2=10cm

AN=BC/2=12,5(Cm)