Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm AB
Xét △△ vuông ABC (ˆA=90o)(A^=90o). Theo định lí Pytago ta có
AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15AB2+AC2=BC2⟹AC2=BC2−AB2=172−82=225⟹AC=15
Xét △ABC△ABC có M là trung điểm AB, E là trung điểm BC \Rightarrow ME là đường trung bình của △ABC△ABC
\Rightarrow ME//AC,ME=12AC=7,5ME//AC,ME=12AC=7,5
Xét △ABD△ABD vuông tại D có DM là trung tuyến thuộc cạnh AB
⟹DM=12AB=4⟹DM=12AB=4
Do △ABD△ABD đều \Rightarrow trung tuyến DM còn là đường cao
⟹MD⊥AB⟹MD//AC⟹MD⊥AB⟹MD//AC
Do DM//AB,EM//AB⟹D,M,EDM//AB,EM//AB⟹D,M,E thẳng hàng
⟹DE=ME−DM=7,5−4=3,5⟹DE=ME−DM=7,5−4=3,5
Vậy DE=3,5 cm
Gọi giao điểm của ED và AB là F.
Ta có: \(\Delta\)ABC vuông tại A , trung tuyến AE => AE=BE=CE
Xét \(\Delta\) AED và \(\Delta\)BED có:
AE=BE
DE chung => \(\Delta\)AED=\(\Delta\)BED (c.c.c)
AD=BD
=> ^AED=^BED (2 góc tương ứng) => ED là phân giác của ^AEB.
Mà \(\Delta\)AEB cân tại E (AE=BE) => ED là trung tuyến của \(\Delta\)AEB
Hay DF là trung tuyến của \(\Delta\)DAB. Do \(\Delta\)DAB vuông cân tại D => DF=1/2AB=8/2=4
Lại có: AC2=BC2-AB2=172-82=225 => AC=15 (cm)
E là trung điểm BC, F là trung điểm AB => EF là đường trung bình \(\Delta\)ABC
=> EF=AC/2=15/2=7,5 (cm)
=> DE=EF-DF=7,5-4=3,5 (cm)
Vậy DE=3,5cm.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a, xét tam giác ABC và tam giác DAB có:
góc BAC = góc ADB=90 độ
góc ABC = góc BAD( so le trong của Ax//BC)
do đó: tam giác ABC đồng dạng với tam giác DAB(g-g)
b, áp dụng định lí pytago vào tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)
theo cm câu a : tam giác ABC đồng dạng với tam giác DAB
=>\(\frac{AB}{AD}=\frac{BC}{AB}=\frac{AC}{BD}\)
\(\Rightarrow AD=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(BD=\frac{AB.AC}{BC}=\frac{15.20}{25}=12cm\)
c, \(S_{ABD}=\frac{1}{2}.AD.BD=\frac{1}{2}.9.12=54cm^2\)
Theo đề bài ta có : \(\Delta DAB\)vuông cân tại D
\(\Rightarrow A_1=45^o\)( bù nhau )
Kéo dài BD cắt AC tại F .
Xét \(\Delta ABF\)có :
AD là đường phân giác đồng thời là đường cao
\(\Rightarrow\Delta ABF\)cân tại A
\(\Rightarrow AF=AB=8cm\)
Áp dụng định lí Py-ta-go ta có :
\(AC^2=BC^2-AB^2\)
\(\Rightarrow AC^2=17^2-8^2\)
\(\Rightarrow AC^2=225\)
\(\Rightarrow AC=\sqrt{225}=15\)
\(\Rightarrow CF=15-8=7cm\)
Xét tam giác BFC Có : \(EB=EC\left(gt\right)\)
\(DE//FC\)
=> DE là đường trung bình của tam giác BCF
\(\Rightarrow DE=\frac{1}{2}CF=3,5cm\)(T/c đường trung bình )