K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

a/quá dễ Pitago tìm AC rồi tìm S b/MN//BC nên \(\frac{ME}{BF}=\frac{AE}{AF}\left(1\right)\), và \(\frac{NE}{CF}=\frac{AE}{AF}\left(2\right)\)

(1)=(2) và BF=CF nên ME=NE

28 tháng 2 2020

Cho O,D là tđ BM,NC(1)

(1) suy ra OD//BC( OD là đ/TB h/thang MNCB)(2)

Lại có I là tđ EF nên OI//BC ( OI là đ/TB h/thang MEFB)(3)

(2) và (3) suy ra O,I,D thẳng hàng (*)

Lại có G là tđ MC nên GD//MN( GD là đ/TB tgiac MNC) (4)

Lại có H là tđ BN nên OH//MN ( HO là đ/TB tgiac MNB) (5)

(4) ,(5) suy ra O,H,G,D nằm trên 1 đ/thẳng

Cộng với (*) suy ra ĐPCM

23 tháng 8 2019

a) AC = 10cm Þ SABC =37,5 (cm2)

b) Chứng minh được M A E ^ = A M E ^  (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.

c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.

S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )  

Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2

22 tháng 9 2021

mik cam on

6 tháng 1 2018

a) Học sinh tự làm

b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N  

hay E là trung điểm MN.

c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình  hành; Mặt khác BM ^ NC (do AB ^ AC)

Suy ra EHFG là hình chữ nhật

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:a, =B, =*c, =3, cho...
Đọc tiếp

1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM

2
28 tháng 2 2016

giúp mình với nha 

Câu 3:

Xét ΔMDC có AB//CD

nên MA/MD=MB/MC(1)

Xét ΔMDK có AI//DK

nên AI/DK=MA/MD(2)

Xét ΔMKC có IB//KC

nên IB/KC=MB/MC(3)

Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK

Vì AI//KC nên AI/KC=NI/NK=NA/NC

Vì IB//DK nên IB/DK=NI/NK

=>AI/KC=IB/DK

mà AI/DK=IB/KC

nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)

=>AI=IB

=>I là trung điểm của AB

AI/DK=BI/KC

mà AI=BI

nên DK=KC

hay K là trung điểm của CD

4 tháng 4 2020

A B C M N I K

a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)

=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)

 => \(CN=AC-AN=8-3=5\)

b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)

       NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)

=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)

=> MK = KN => K là trung điểm của MN

c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)

=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)

Ta có: BC2 = 102 = 100

   AB2 + AC2 = 62  + 82 = 100

=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)

=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)

5 tháng 4 2020

Hình bạn tự vẽ nhá

a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)

Gọi x là AN

NC là: 8 - x

Vì MN // BC, theo định lý Ta-lét ta có:

AMMB=ANNC⇔2,253,75=x8−x

⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)

⇔2,25(8−x)=3,75x

⇔18−2,25x=3,75x

⇔−2,25x−3,75x=−18

⇔−6x=−18

⇔x=−18−6

⇔x=3

Nên NC = 8 - x = 8 - 3 = 5 (cm)

Vậy AN = 3cm, NC = 5cm

b) Ta có: MN // BC (gt) (1)

 MK // BI, theo hệ quả của định lý Ta-lét ta có:

AKAI=MKBI (2)

Từ (1)  KN // IC, theo hệ quả của định lý Ta-lét ta có:

AKAI=KNIC (3)

Từ (2), (3) ⇒MKBI=KNIC(4)

Mà BI = IC (gt) (5)

Từ (4), (5) ⇒MK=KN

Nên K là trung điểm của MN

28 tháng 2 2020

Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N

a) Tính độ dài các đoạn thẳng AN, CN.

b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN

. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0