K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

e) \(AH\perp BC\)(giả thiết).

\(\Rightarrow\Delta HAB\)vuông tại H.

\(\Rightarrow S_{HAB}=\frac{AH.BH}{2}=4,8.\frac{30}{14}=\frac{144}{14}=\frac{72}{7}\left(cm^2\right)\)

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{BC}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{BC+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+AB}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{10+6}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Vì \(\Delta ABC\)vuông tại A (giả thiết).

\(\Rightarrow\widehat{CAB}=90^0\Rightarrow\widehat{DAB}=90^0\)

\(\Rightarrow\Delta ADB\)vuông tại A.

\(\Rightarrow S_{ADB}=\frac{AD.AB}{2}=\frac{3.6}{2}=9\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{AB.AC}{2}\)(theo câu a))

\(\Rightarrow S_{ABC}=\frac{6.8}{2}=\frac{48}{2}=24\left(cm^2\right)\)

Lại có: \(S_{ABD}+S_{BCD}=S_{ABC}\)

\(\Rightarrow9+S_{BCD}=24\)(thay số).

\(\Rightarrow S_{BCD}=24-9=15\left(cm^2\right)\)

Vậy \(S_{HAB}=\frac{72}{7}cm^2;S_{BCD}=15cm^2\)

28 tháng 3 2021

A B C H E D I