Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Áp dụng định lí Pi-ta-go vào tam giác ABC vuông, ta có
BC2=AB2+AC2
= 36 + 64 = 100
=> BC = 10 cm
chu vi tam giác ABC là: 36+64+100=200(cm)
a. Áp dụng định lí Pytago trong tam giác ABC ta có:
BC2 = AB2 + AC2 = 62 + 82 = 100 ⇒ BC = 10cm
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\)
Thay: \(BC^2=6^2+8^2.\)
\(\Rightarrow BC=8\left(cm\right).\)
Áp dụng định lý Pytago vào tam giác ABC vuông tại B có:
\(AC^2=AB^2+BC^2\)
Thay AB=6cm, AC=10cm
\(\Rightarrow10^2=6^3+BC^2\)
\(\Rightarrow100=36+BC^2\)
\(\Rightarrow BC^2=64\)
\(\Rightarrow BC=8\left(cm\right)\left(BC>0\right)\)
Ban xem o dinh li pita go phan hinh hoc ay BC= 10 CM TICK NHE
Vuông tại A dễ vẽ thôi bn nên mk ko vẽ nữa :))
Áp dụng định lý Py ta go ta có :
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow100=36+AC^2\Leftrightarrow AC^2=100-36=84\)
\(\Leftrightarrow AC=8\)
Chu vi Tam giác ABC là
\(6+10+8=24\left(cm\right)\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)
a) Theo định lí Py-ta-go, ta có:
BC^2 = AB^2 + AC^2
=>BC^2 = 6^2+8^2
=>BC^2 = 100
=>BC = căn 100= 10cm
b) 2 tam giác vuông AHB và AHD có
AH chung
HB = HD giả thiết
=> 2 tam giác trên bằng nhau. ( 2 cạnh góc vuông )
=> AB = AD
c) Xét 2 tam giác vuông HAB và HED có:
HA = HE. giả thiết
HB = HD. giả thiết
=> 2 tam giác trên bằng nhau theo th 2 cạnh góc vuông
=> góc D = góc B
Dễ thấy góc D và góc B ở vị trí so le trong nên AB // ED
Vì BA vuông góc với AC mà AB // ED nên suy ra ED vuông góc với C
Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{100}=10cm\)