\(\Delta\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2020

A B C H 1 2

a) Xét tam giác ABC và tam giác HBA có:

\(\hept{\begin{cases}\widehat{B}chung\\\widehat{BAC}=\widehat{BHA}=90^0\end{cases}\Rightarrow\Delta ABC~\Delta HBA\left(g.g\right)}\)(3)

b) Vì tam giác BHA  vuông tại H(gt) nên \(\widehat{B}+\widehat{A1}=90^0\)( 2 góc bù nhau ) (1)

Ta có: \(\widehat{A1}+\widehat{A2}=\widehat{BAC}=90^0\)(2)

(1),(2)\(\Rightarrow\widehat{B}=\widehat{A2}\)

Xét tam giác HBA và tam giác HAC có:

\(\hept{\begin{cases}\widehat{B}=\widehat{A2}\\\widehat{BHA}=\widehat{AHC}=90^0\end{cases}\Rightarrow\Delta HBA~\Delta HAC\left(g.g\right)}\)(4)

\(\Rightarrow\frac{AH}{BH}=\frac{CH}{AH}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow AH^2=BH.CH\)(5)

c)  Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\)(cm)

Từ (3) \(\Rightarrow\frac{AC}{BC}=\frac{AH}{AB}\)( các đoạn tương ứng tỉ lệ )

\(\Rightarrow\frac{8}{10}=\frac{AH}{6}\)

\(\Rightarrow AH=4,8\)(cm)

Từ (4) \(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}\)

\(\Rightarrow\frac{HB}{6}=\frac{4,8}{8}\)

\(\Rightarrow HB=3,6\)(cm)

Từ (5) \(\Rightarrow HC=6,4\left(cm\right)\)

29 tháng 5 2020

phần d viết lại cậu ơi

31 tháng 5 2020

A B C H D

Bài làm:

a) Xét 2 tam giác: \(\Delta ABC\)và \(\Delta HBA\)có:

\(\hept{\begin{cases}\widehat{ABC}chung\\\widehat{AHB}=\widehat{BAC}=90^0\end{cases}}\)

=> \(\Delta ABC\)đồng dang với \(\Delta HBA\)(G.G)

b) \(\Delta AHB\)đồng dạng với \(\Delta CAB\)(G.G) vì:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{AHC}=90^0\\\widehat{BAH}=\widehat{ACH}=90^0-\widehat{HAC}\end{cases}}\)

=> \(\frac{BH}{AH}=\frac{AH}{HC}\)\(\Leftrightarrow AH^2=BH.HC\)

c) Vì tam giác ABC vuông tại A nên theo định lý Py-ta-go, ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

Theo phần a, \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(G.G)

=> \(\frac{BA}{AH}=\frac{BC}{AC}\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=4.8\left(cm\right)\)

Mà theo phần b, \(AH^2=BH.HC\)\(\Leftrightarrow BH.HC=4.8^2=23.04\Leftrightarrow HC=\frac{23.04}{HB}\)

Thay vào ta có: \(HB+HC=BC\)

\(\Leftrightarrow HB+\frac{23.04}{HB}=10\)

Từ đó ta giải phương trình ẩn HB ra, \(HB=3.6\left(cm\right)\)

=> \(HC=10-3.6=6.4\left(cm\right)\)

d) Đề bạn viết nhầm phải là cho AD là phân giác của tam giác ABC.

Áp dụng tính chất của tia phân giác trong tam giác ta có:

\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{4}\Leftrightarrow DC=\frac{4}{3}BD\)

Thay vào đó, ta giải phương trình sau:

\(BD+DC=BC\Leftrightarrow BD+\frac{4}{3}BD=10\)

Từ đó ta giải phương trình ẩn BD => \(BD=\frac{30}{7}cm\)

=> Diện tích tam giác ABD là:

\(S\Delta ABD=\frac{AH.BD}{2}=\frac{4.8\times\frac{30}{7}}{2}=\frac{72}{7}\left(cm^2\right)\)

Học tốt!!!!

10 tháng 4 2017

bạn nào giúp mình với 

10 tháng 4 2017

bạn cx k pk lm à?

a: Xét ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

Do đó; ΔABC đồng dạng với ΔHBA

b: Xét ΔAHB vuông tại H có HI là đường cao

nên \(AI\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HK là đường cao

nên \(AK\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AI\cdot AB=AK\cdot AC\)

2 tháng 6 2020

đấu 

~ là đấu đồng dạng nha

16 tháng 5 2018

Hỏi đáp Toán

a. Xét \(\Delta HBA\)\(\Delta ABC\) có:

\(\widehat{B}\left(chung\right)\)

\(\widehat{BHA}=\widehat{BAC}\left(=90^0\right)\)

Do đó: \(\Delta HBA\infty\Delta ABC\left(g-g\right)\)

b. Vì \(\Delta ABC\) vuông tại A
=> \(AB^2+AC^2=BC^2\)

hay \(6^2+8^2=BC^2\)

=> \(\sqrt{BC}=\sqrt{100}\)

=> BC = 10cm

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

hay \(\dfrac{AH}{8}=\dfrac{6}{10}\)

=> AH = 4,8 cm

\(\Delta ABH\) vuông tại H

=> \(BH^2+AH^2=AB^2\)

hay \(BH^2=6-4,8\)

=> BH = 1,2 cm

c. Xét \(\Delta ABC\)\(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}\left(chung\right)\)

Do đó: \(\Delta ABC\infty\Delta HAC\left(g-g\right)\)

\(\Delta HBA\infty\Delta ABC\left(cmt\right)\)

=> \(\Delta HAC\infty\Delta HBA\)

=> \(\dfrac{AH}{HB}=\dfrac{HC}{AH}\)

hay \(AH^2=HB.HC\)

29 tháng 3 2018

a)  Xét   \(\Delta HAC\) và     \(\Delta MAH\)có:

\(\widehat{AHC}=\widehat{AMH}=90^0\)

\(\widehat{HAC}\)      CHUNG

suy ra:   \(\Delta HAC~\Delta MAH\)

\(\Rightarrow\)\(\frac{AH}{AM}=\frac{AC}{AH}\)\(\Rightarrow\)\(AH^2=AM.AC\)