Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để tính AC và BC, ta sử dụng định lý sin trong tam giác vuông: AC = AB * sin(C) = 6 * sin(40°) ≈ 3.86 BC = AB * cos(C) = 6 * cos(40°) ≈ 4.59
b. Gọi M là trung điểm của AC. Ta có BM là đường phân giác của góc B trong tam giác ABC. K là hình chiếu của A lên BM, và E là giao điểm của AH và BM. Theo định lý hình chiếu, ta có: AE = AM * sin(B) = (AC/2) * sin(B) = (3.86/2) * sin(40°) ≈ 1.24 c. Ta cần chứng minh rằng 1/AK² = 1/AB² + 1/AE². Áp dụng định lý Pythagoras trong tam giác AKH, ta có: AK² = AH² + KH² Áp dụng định lý Pythagoras trong tam giác ABH, ta có: AB² = AH² + BH² Áp dụng định lý Pythagoras trong tam giác AEH, ta có: AE² = AH² + EH² Từ đó, ta có: AK² - AB² = (AH² + KH²) - (AH² + BH²) = KH² - BH² Vì BN là đường phân giác của góc B, nên BH = BN/2. Khi đó, ta có: AK² - AB² = KH² - (BN/2)² = KH² - BN²/4 Từ định lý hình chiếu, ta biết rằng KH = AE. Khi đó, ta có: AK² - AB² = AE² - BN²/4 Nhân cả hai vế của phương trình trên với 4, ta có: 4(AK² - AB²) = 4(AE² - BN²/4) Simplifying, ta có: 4AK² - 4AB² = 4AE² - BN² Chia cả hai vế của phương trình trên cho 4AK² * AB², ta có: 1/AK² - 1/AB² = 1/AE² - 1/BN² Từ đó, ta có: 1/AK² = 1/AB² + 1/AE² Vậy phương trình đã được chứng minh. d. Ta cần tính KHI. Vì AK cắt BC tại I, nên ta có: KHI = KBC Vì BN là đường phân giác của góc B, nên ta có: KBC = KBA = KAB
Vậy KHI = KAB.
Xét ΔANC có
AK là phân giác
NM là trung tuyến
Ch là đường cao
AK cắt NM cắt CH tại K
=>ΔANC đều
=>NM vuông góc AC
=>góc A1+góc A2=60 độ
=>góc A3=góc A1=góc A2=30 độ
AB vuông góc AC
NM vuông góc AC
=>AB//MN
=>góc A1=góc N2
=>góc N1=góc N2=30 độ
ΔAMK vuông tại M có góc MAK=30 độ
nên góc AKM=60 độ
=>góc BNM=góc AKM
=>AK//BN
b: Xét ΔACB vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(1\right)\)
Xét ΔABK vuông tại A có AK là đường cao
nên \(AB^2=BK\cdot BD\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BC=BK\cdot BD\)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
#)Giải :
a)\(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{BAD}+\widehat{DAC}=90^o\left(1\right)\)
\(\Delta HAD\)vuông tại H (gt)\(\Rightarrow\widehat{HDA}+\widehat{HAD}=90^o\left(2\right)\)
Vì AD là tia phân giác của \(\widehat{HAC}\Rightarrow\)\(\widehat{HAD}=\widehat{DAC}\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAD}=\widehat{DAC}\)
\(\Rightarrow\Delta ABD\)cân tại A
b) Từ cmt \(\Rightarrow AB=BD\)(tính chất của tam giác cân)
Đặt \(AB=BD=x\)
Áp dụng hệ thức lượng trong tam giác vuông ABC
\(\Rightarrow AB^2=HB.HC\)
Hay \(x^2=\left(x-6\right)25\)
\(\Rightarrow x^2-25+150=0\)
\(\Rightarrow\left(x-10\right)\left(x-15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-10=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\x=15\end{cases}}}\)
Vậy AB = 10 hoặc AB = 15
Từng bài 1 thôi bạn!
A B C J O N K H M
vẽ trên đt thông cảm!
Do đường tròn ngoại tiếp tam giác ABC có tâm là O
Ta có bổ đề: \(OM=AN=NH=\frac{1}{2}AH\)(tự chứng minh)
Vì \(\widehat{BAH}=\widehat{OAC}\)(cùng phụ với \(\widehat{ABC}\))
Mà AK là phân giác của \(\widehat{BAC}\)
=> AK là phân giác
\(\widehat{HAO}\Rightarrow\widehat{NAK}=\widehat{KAO}\)
Theo bổ đề trên ta có tứ giác ANMO là hình bình hành
=> HK//AO
=> \(\widehat{AKN}=\widehat{KAO}=\widehat{NAK}\left(cmt\right)\)
Hay tam giác NAK cân tại N mà N là trung điểm AH
=> AN=NH=NK
=> \(\Delta AHK\)vuông tại K
a: Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}\)
=>\(BC=\dfrac{6}{sin40}\simeq9,33\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{BC^2-AB^2}\simeq7,14\)
b:
ΔBEH vuông tại H
=>\(\widehat{BEH}+\widehat{HBE}=90^0\)
=>\(\widehat{BEH}=90^0-\widehat{NBC}\)
ΔANB vuông tại A
=>\(\widehat{ANB}+\widehat{ABN}=90^0\)
=>\(\widehat{ANB}=90^0-\widehat{ABN}\)
Ta có: \(\widehat{AEN}=\widehat{BEH}=90^0-\widehat{NBC}\)
\(\widehat{ANE}=90^0-\widehat{ABN}\)
mà \(\widehat{NBC}=\widehat{ABN}\)
nên \(\widehat{AEN}=\widehat{ANE}\)
=>AE=AN
Xét ΔABN vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AB^2}=\dfrac{1}{AE^2}+\dfrac{1}{AB^2}\)