Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 6^2+8^2=10cm
HA=6*8/10=4,8cm
a, Xét tam giác ABC và tam giác HBA ta có
^B _ chung
^BAC = ^BHA = 900
Vậy tam giác ABC ~ tam giác HBA (g.g)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=15cm\)
\(\dfrac{AC}{AH}=\dfrac{BC}{AB}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{36}{5}cm\)
\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{27}{5}cm\)
=> CH = 48/5 cm
c, \(\dfrac{S_{ACD}}{S_{HCE}}=\left(\dfrac{AC}{HC}\right)^2=\dfrac{25}{16}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
Suy ra: HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
a: Xet ΔABC và ΔHBA có
góc B chung
góc BAC=góc BHA
=>ΔABC đồg dạng với ΔHBA
b: ΔABC vuông tại A mà AH là đường cao
nên HA^2=HB*HC
c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co
góc ACD=góc HCE
=>ΔCAD đồng dạng với ΔCHE
=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔBCA vuông tại A có AH vuông góc BC
nên AH^2=HB*CH
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
tính bc=10 ah=ab*ac/bc=4,8 hc=6,4
Vì be là pg acb ta có ac/hc=ae/eh=5/4
lại có ae+eh=ah=4,8 nên eh=32/15
Sehc=eh*hc/2=512/75
Sabc=6*8/2=24
Sabc/Shce=255/64
*hoặc dùng tỉ số S=bình phương tỉ số cạnh trong 2 t giác đồng dạng cũng đc
bạn cm 2 t giác ABC và HEC đồng dạng đi^^