Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Áp dụng pytago: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)
Áp dụng HTL: \(AH\cdot BC=AB\cdot AC=12\Leftrightarrow AH=\dfrac{12}{BC}=2,4\left(cm\right)\)
\(b,\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\left[{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Leftrightarrow\widehat{B}\approx53^0;\widehat{C}\approx37^0\)
a) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Áp dụng HTL:
\(AB.AC=AH.BC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)
b) Xét tam giác ABC vuông tại A:
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
\(\Rightarrow\widehat{B}\approx53^0\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Rightarrow\widehat{C}\approx37^0\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a,Áp dụng định lí pytago vào tg ABC
AB^2+AC^2=BC^2
<=> 3^2+4^2=BC^2
=> BC=5
Áp dụng hệ thức 4
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
\(\frac{1}{AH^2}=\frac{1}{3^2}+\frac{1}{4^2}\)
\(\frac{1}{AH^{^2}}=\frac{25}{144}\)
\(\Rightarrow AH^2=5.76\)
\(\Rightarrow AH=2.4\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)
Do đó: AEHF là hình chữ nhật
a) Xét ΔABC có
\(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{4}{5}\)
nên \(\widehat{C}\simeq53^0\)
\(\Leftrightarrow\widehat{B}=37^0\)
b) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{4}=\dfrac{CD}{3}\)
mà BD+CD=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{3}=\dfrac{BD+CD}{4+3}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{20}{7}cm;CD=\dfrac{15}{7}cm\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)