Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A E M F C
Xét tam giác AEM và tam giác CFM có:
\(\widehat{AEM}=\widehat{CFM}=90^o\)
AM=MC( M là trung điểm AC)
\(\widehat{AME}=\widehat{CMF}\)( đối đỉnh)
=> tam giác AEM=CFM
=> ME=MF
b) BE+BF=BE+BM+MF=BE+BM+EM=(BE+EM)+BM=BM+BM=2.BM
Xét tam giác BAM vuông tại A
=> BM>AB
=> BE+BF=2.BM>2.AB>2.3=6
=> dpcm
a)ta có \(\Delta\)ABC cân tại A(AB=AC)
mà AH là đường trung tuyến(H là trung điểm BC)
nên AH là đường cao,đường phân giác,đường trung trực
xét \(\Delta\)vuông ABH và \(\Delta\)vuông ACH(ah là đường cao) có:
AB=AC(gt)
AH là cạnh chung
nên \(\Delta\)ABH=\(\Delta\)ACH
b)xét \(\Delta\)vuông AHE và \(\Delta\)vuông AHF có
AH là cạnh chung
góc EAH=góc FAH(AH là đường phân giác)
nên \(\Delta\)AHE=\(\Delta\)AHF
c)xét \(\Delta\)AEN và \(\Delta\)AFM có
AE=AF(\(\Delta\)AHE=\(\Delta\)AHF)
góc EAH=góc FAH(AH là đường phân giác)
góc NEA=góc MFA(\(\Delta\)AHE=\(\Delta\)AHF)
nên \(\Delta\)AEN=\(\Delta\)AFM
nên AM=AN
mà AE=AF
nên ME=NF(chứng minh xong)
xét \(\Delta\)MEN và \(\Delta\)MFN có
ME=NF
EF là cạnh chung
góc FME=góc ENF(\(\Delta\)AEN=\(\Delta\)AFM)
nên \(\Delta\)MEN=\(\Delta\)MFN
nên MF=NE
d)ta có \(\Delta\)AMN cân tại A(AM=AN)
nên góc AMN=góc ANM
mà góc AEN=góc AFM(\(\Delta\)AEN=\(\Delta\)AFM)
nên góc ENM=góc FMN
nên 2 góc HMN=góc ENM+góc FMN
ta có \(\Delta\)HEF cân tại H(HE=HF)
nên góc HEF=góc HFE=2 góc HFE
ta có 2 góc HEF+góc EHF=2 góc HMN+góc MHN=180 độ
mà góc EHF=góc MHN(đối đỉnh)
nên 2 góc HMN=2 góc HEF
nên góc HMN=góc HEF
mà 2 góc này ở vị trí slt
nên EF//MN