Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC vuông tại A có:
\(cos\widehat{B}=\frac{AB}{BC}=\frac{3}{\sqrt{18}}=\frac{\sqrt{2}}{2}\)
=> \(\widehat{B}=45^o\)
mà \(\widehat{B}+\widehat{C}=90^o\)(tam giác ABC vuông tại A)
=> \(\widehat{C}=90^o-\widehat{B}=90^o-45^o=45^o\)
Vậy...
a) Ta có: \(BC^2=\left(5\sqrt{2}\right)^2=50\)
\(AB^2+AC^2=5^2+5^2=50\)
Do đó: \(BC^2=AB^2+AC^2\)(=50)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Vậy: \(AB=4\sqrt{5}cm\)
Bài 2:
Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:
\(MP^2=MN^2+NP^2\)
\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)
hay MN=4cm
Vậy: MN=4cm
Bài 1 :
- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)
\(\Leftrightarrow AB^2+8^2=12^2\)
\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )
Vậy ...
Bài 2 :
- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :
\(MN^2+NP^2=MP^2\)
\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)
\(\Leftrightarrow MN=4\) ( đvđd )
Vậy ...
Ta có: ΔAHB vuông tại H
mà \(\widehat{B}=45^0\)
nên ΔAHB vuông cân tại H
=>AH=HB
Ta có: ΔAHB vuông tại H
nên \(AH^2+HB^2=AB^2\)
=>AH=HB=3cm
=>HC=4cm
=>AC=5cm
C=AB+BC+AC
\(=7+5+3\sqrt{2}=12+3\sqrt{2}\left(cm\right)\)