Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Áp dụng định lý pi - ta - go vào tam giác ABC vuông tại A có :
\(AB^2+AC^2=BC^2\)
=> \(BC^2=3^2+4^2=25\)
=> \(BC=5\left(cm\right)\)
- Xét tam giác ABC có trung tuyến AM ứng với cạnh huyền BC .
=> \(AM=\frac{1}{2}BC=\frac{1}{2}5=\frac{5}{2}\left(cm\right)\)
b, - Xét tứ giác AEMF có : \(\left\{{}\begin{matrix}EM//AC\left(\perp AB\right)\\MF//AB\left(\perp AC\right)\end{matrix}\right.\)
=> Tứ giác AEMF là hình bình hành .
Lại có góc BAC = 90o ( tam giác vuông )
=> Tứ giác AEMF là hình chữ nhật .
=> AM = EF ( tính chất HCN )
I,M là trung điểm BF,BC nên IM là đường TB \(\Delta BFC\)
\(\Rightarrow\)IM//AC nên AIMK là hình thang
Lại có \(\Delta ABF\) với I là trung điểm BF nên AI=1/2BF(2)
Có K,M là trung điểm CF,BC nên MK là đường TB \(\Delta BFC\)
\(\Rightarrow MK=\frac{1}{2}BF\left(2\right)\)
Từ (1),(2) có AIMK là hình thang có 2 cạnh bên bằng nhau
-Từ đây ta sẽ có: AIMK là hbh hoặc AIMK là hình thang cân
Ta sẽ dùng chứng minh phản chứng để CM AIMK là hình thang cân. Giả sử AIMK là hbh : ta sẽ có: AI//MK
Mà MK//BF( MK là đ/TB)
Nên AI//BF ( vô lí, vì AI là trung tuyến ứng với BF)
Từ đó AIMK ko là hbh suy ra AIMK là hình thang cân
A B C M 3 4 E F H k I
Bài làm
a) Xét tam giác ABC vuông tại A có:
Theo định lí Py-ta-go có:
BC2 = AB2 + AC2
hay BC2 = 32 + 42
=> BC2 = 9 + 16
=> BC2 = 25
=> BC = 5 ( cm )
Vì tam giác ABC vuông tại A
Mà AM trung tuyến
=> AM = BM = MC = BC/2 = 5/2 = 2,5 ( cm )
b) Ta có: MF vuông góc với AC
AB vuông góc với AC
=> MF // AB => MF // AE
Lại có: ME vuông góc với AB
AB vuông góc với AC
=> ME // AC => ME // AF
Xét tứ giác AEMF có:
EM // AF ( cmt )
MF // AE ( cmt )
=> AEMF là hình bình hành
Mà góc EAF = 90o
=> AEMF là hình chữ nhật.
=> EF = AM ( hai đường chéo )
c) Xét tam giác AHB vuông tại H có:
\(\widehat{HAB}+\widehat{B}=90^0\) (1)
Xét tam giác ABC vuông tại A có:
\(\widehat{B}+\widehat{C}=90^0\) (2)
Từ (1) và (2) => \(\widehat{HAB}=\widehat{C}\) (3)
Vì AM = MC ( cmt )
=> Tam giác MAC cân tại M
=> \(\widehat{MAC}=\widehat{C}\) (4)
Từ (3) và (4) => \(\widehat{HAB}=\widehat{MAC}\)
d) ( * Ăn cơm xg mik lm tiếp cho )
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
1a) A=D=E=90 độ
=>AEHD là hcn
=>AH=DE
b)Xét tam giác DBH vuông tại D có:
DI là đường trung tuyến ứng với cạnh huyền BH
=>DI=BH/2=IH
=>tam giác IDH cân tại I
=>góc IDH=góc IHD (1)
Gọi O là gđ 2 đường chéo AH và DE
=>OD=OA=OE=OH (tự c/m)
=> tam giác DOH cân tại O
=> góc ODH=góc OHD(2)
từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)
=>IDvuông góc DE(3)
Cmtt ta được: KEvuông góc DE(4)
Từ (3)và (4) => DI//KE.
2a) Ta có góc HAB+góc HAC=90 độ (1)
Xét tam giác ABC vuông tại A có
AM là đg trung tuyến ứng vs cạnh huyền BC
=>AM=MC
=>tam giác AMC cân
=>góc MAC=góc ACM
Lại có: góc HAC+góc ACH=90 độ(2)
Từ (1) và (2) => góc BAH=góc ACM
Mà góc AMC=góc MAC(cmt)
=>ABH=MAC(3)
b)A=D=E=90 độ
=>AFHE là hcn
Gọi O là gđ EF và AM
OA=OF(tự cm đi nha)
=>tam giác OAF cân
=>OAF=OFA(4)
Ta có : OAF+MCA=90 độ(5)
Từ (3)(4) và (5)
=>MAC+OFA=90 độ
Hay AM vuông góc EF
k giùm mình nha.