Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4(cm)
Vậy: BC=5cm; AH=2,4cm
b) Xét (A) có
AI là một phần đường kính
MH là dây
AI⊥MH tại I(gt)
Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)
Xét ΔCMI vuông tại I và ΔCHI vuông tại I có
CI chung
IM=IH(I là trung điểm của MH)
Do đó: ΔCMI=ΔCHI(hai cạnh góc vuông)
Suy ra: CM=CH(hai cạnh tương ứng)
Xét ΔCMA và ΔCHA có
CM=CH(cmt)
CA chung
AM=AH(=R)
Do đó: ΔCMA=ΔCHA(c-c-c)
Suy ra: \(\widehat{CMA}=\widehat{CHA}\)(Hai góc tương ứng)
mà \(\widehat{CHA}=90^0\)(gt)
nên \(\widehat{CMA}=90^0\)
hay CM là tiếp tuyến của (A)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD
b, HE = 4 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Theo tc 2 tt cắt nhau: \(AC=AM;BM=BD\)
\(\Rightarrow AC+BD=AM+BM=AB\)
b. \(\left\{{}\begin{matrix}\widehat{AMO}=\widehat{ACO}=90^0\\AC=AM\\AO.chung\end{matrix}\right.\Rightarrow\Delta AOC=\Delta AOM \)
\(\Rightarrow\widehat{COA}=\widehat{AOM}=\dfrac{1}{2}\widehat{COM}\)
\(\left\{{}\begin{matrix}\widehat{ODB}=\widehat{OMB}=90^0\\BD=MB\\OB.chung\end{matrix}\right.\Rightarrow\Delta OBD=\Delta OBM\\ \Rightarrow\widehat{DOB}=\widehat{BOM}=\dfrac{1}{2}\widehat{DOM}\)
\(\Rightarrow\widehat{AOB}=\widehat{AOM}+\widehat{BOM}=\dfrac{1}{2}\left(\widehat{COM}+\widehat{DOM}\right)=\dfrac{1}{2}\cdot180^0=90^0\\ \Rightarrow\Delta OAB\text{ vuông tại O}\)
c. Áp dụng HTL: \(AM\cdot MB=OM^2=R^2\)
Mà \(CD=2R;AM=AC;BM=BD\)
Vậy \(AC\cdot BD=AM\cdot BM=R^2=\left(\dfrac{CD}{2}\right)^2=\dfrac{CD^2}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Gọi O là trung điểm CD
Từ giả thiết suy ra tam giác ABD và tam giác ODE đều
=> DE = DH = DO = 1 4 BC
=> H E O ^ = 90 0
=> HE là tiếp tuyến của đường tròn đường kính CD