K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2022

a) Xét \(\Delta ABC\) vuông tại A:

\(BC^2=AB^2+AC^2\) (Pytago).

Thay: \(BC^2=3^2+4^2.\)

\(\Rightarrow BC=5\left(cm\right).\)

Xét \(\Delta ABC:\)

BD là đường phân giác (gt).

\(\Rightarrow\dfrac{AD}{CD}=\dfrac{AB}{BC}\) (Tính chất đường phân giác).

\(\Rightarrow\dfrac{AD}{CD+AD}=\dfrac{AB}{BC+AB}.\)

\(\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{BC+AB}.\)

Thay: \(\dfrac{AD}{4}=\dfrac{3}{5+3}.\)

\(\Rightarrow AD=1,5\left(cm\right).\)

\(\Rightarrow CD=BC-AD=5-1,5=3,5\left(cm\right).\)

b) Xét \(\Delta ABC:\)

DK // AB (gt).

\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AD}{CD}\left(Talet\right).\)

Mà \(\dfrac{AD}{CD}=\dfrac{AB}{BC}\left(cmt\right).\)

\(\Rightarrow\dfrac{BK}{CK}=\dfrac{AB}{BC}.\\ \Rightarrow BK.BC=AB.CK.\)

20 tháng 4 2016

A đù! Tự biên tự diễn! 

=)))

18 tháng 4 2016

a) Xét 2∆: ABC và HAB có

+ ∠BAC = 900(gt); ∠BHA = 900 (AH ^ BH) => ∠BAC= ∠BHA

+ ∠ABC =  ∠ BAH (so le)

=> ∆ABC  ~  ∆HAB

b) Xét 2∆: HAB và KCA có:

+ ∠CKA = 900 (CK ^ AK) => ∠AHB = ∠CKA

+ ∠CAK + ∠BAH = 900(do ∠BAC = 900), ∠BAH + ∠ABH = 90(∆HAB vuông ở H) =>

∠CAK = ∠ABH

=> ∆HAB ~    ∆KCA

=> AH.AK = BH.CK

c) có: ∆ABC ~ ∆HAB (c/m a)

Ta có: + AH // BC

+ MA + MB = AB => MA + MB = 3cm

=> 34/25MB = 3

=> MB = 75/34cm

+ Diện tích ∆MBC là

S =1/2.AC.MB=75/17

10 tháng 2 2019

Đây là toán lớp 7 mà!

a: Xét tứ giác AEDF có 

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

mà AD là phân giác

nên AEDF là hình thoi

mà \(\widehat{EAF}=90^0\)

nên AEDF là hình vuông

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/3=DC/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{5}{7}\)

Do đó: DB=15/7(cm); DC=20/7(cm)

9 tháng 4 2022

Vẽ hình(tự vẽ nha)

a) Ta có: \(BC^2\)=\(5^2=25\)

\(AB^2+AC^2=3^2+4^2=9+16=25\)

\(AB^2+AC^2=BC^2\)

⇒Δ ABC vuông tại A (theo định lí Py-ta -go đảo)

⇒BA⊥AC

Mà DE//AC(gt);DF//AB(gt)

⇒DE⊥BA;DF⊥AC(t/c)

Xét tứ giác AEDF có   \(\widehat{AFD}=90^o\left(DF\perp AC\right)\)\(\widehat{BAC}=90^o\left(BA\perp AC\right);\widehat{AED}=90^{o^{ }}\left(DE\perp BA\right)\);AD là p/g \(\widehat{BAC}\)

⇒Tứ giác AEDF là hình vuông (d/h)

b) Xét ΔABC có AD là tia phân giác \(\widehat{BAC}\),theo t/c ta có:

\(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)\(\dfrac{DC}{AC}=\dfrac{BD}{AB}\)hay\(\dfrac{DC}{4}=\dfrac{BD}{3}\) 

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{DC}{4}=\dfrac{BD}{3}\)=\(\dfrac{DC+BD}{4+3}=\dfrac{BC}{7}=\dfrac{5}{7}\)

\(\left\{{}\begin{matrix}DC=4.\dfrac{5}{7}=\dfrac{20}{7}\left(cm\right)\\BD=BC-DC=5-\dfrac{20}{7}=\dfrac{15}{7}\left(cm\right)\end{matrix}\right.\)

Bạn xem lại có phải chép sai đề không?,ở chỗ "tứ giác aebf là hình gì" và chỗ "af/ab+af/ab=1",và câu d có gì đó thiếu thiếu.Mk đã sửa lại câu a,vì như vậy mới ra tứ giác.

 

 

 

 

a: Xét ΔBAH có BI là phân giác

nên IA/BA=IH/BH

=>IA*BH=BA*IH

b: ΔACB vuông tạiA có AH vuông góc BC

nên BA^2=BH*BC

\(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

CH=4^2/5=3,2cm

c: ΔBAC có BD là phân giác

nên DC/DA=BC/BA

=>DC/DA=BA/BH=AI/IH

=>DC*IH=DC*IA